Developments in Hierarchical Phrase-based Translation

Philip Resnik
University of Maryland

Work done with
David Chiang, Chris Dyer, Nitin Madnani, and Adam Lopez
Some things you’ve seen recently…

Shamelessly stolen from Philipp Koehn
Some things you’ve seen recently…

Shamelessly stolen from Kevin Knight

The gunman was killed by police.

Decoder Hypothesis #1923
Can we capture this modification relationship without ISI-style syntactic modeling?
Australia is with North Korea with diplomatic relations. Australia is with few countries of the minority of countries, one of which is North Korea.
few countries have diplomatic relations with North Korea.
Australia is one of the few countries that have diplomatic relations with North Korea.
Synchronous CFG

(X → 与 X₁ 有 X₂, X → have X₂ with X₁)

(X → 北 韩, X → North Korea)

(X → 邦交, X → diplomatic relations)
Australia is one of the few countries that have diplomatic relations with North Korea.

(与北韩有邦交，have diplomatic relations with North Korea)

(邦交, diplomatic relations)

(北韩, North Korea)

(X → 与 X₁ 有 X₂, X → have X₂ with X₁)
Permits dependencies over long distances without memorizing intervening material (sparseness!)
Non-Hierarchical Phrases

- zai
- yindu
- in
- Indian
- renmin
- People’s
- dang
- Party
- de
- yali
- of
- pressure
- down
- xia
- under
- pressure
- from
- the
- Indian
- People’s
- Party
Hierarchical Modeling

zai
in
yindu renmin dang de yali xia
Indian People’s Party of pressure down

under pressure from the Indian People’s Party
Structures Useful for MT
Hiero: Hierarchical Phrase-Based Translation

• Introduced by Chiang (2005, 2007)
• Moves from phrase-based models toward syntax
 – Phrase table → Synchronous CFG
 • Learn reordering rules together with phrases
 $X \rightarrow <与X1有X2, have X2 with X1>$$
 $X \rightarrow <北韩, North Korea>$$
 – Decoder → Parser
 • CKY parser
 • Target side of grammar intersected with finite state LM
 • Log-linear model tuned to optimize objective (BLEU, TER, …)
Roadmap

- Brief review of Hiero
- New developments
 - Confusion network decoding (Dyer)
 - Suffix arrays for richer features (Lopez)
 - Paraphrase to improve parameter tuning (Madnani)
- Summary and conclusions
Confusion Network Decoding for Translating ASR Output

• ASR systems produce word graphs:

• Equivalent to weighted FSA

• However, Hiero assumes 1-best input
Confusion networks (a.k.a. pinched lattices, meshes, sausages)

• Approximation of a word lattice (Mangu, et al., 2000)
 – Every path through the network hits every node
 – Probability distribution over words at a given position

 – Special symbol ε (epsilon) represents a skip.
Translating from Confusion Networks

- Confusion networks for MT
 - Many more paths than in the source lattice
 - Nice properties for dynamic programming

- Decoding confusion networks beats 1-best hypothesis with a phrase-based model
 - Bertoldi, et al. 2005

- Decoding confusion networks is highly efficient with a phrase-based model
 - Hopkins Summer Workshop
 - Moses decoder accepts input as a confusion network
 - Bertoldi, et al. 2007
The value of hierarchy in the face of ambiguity

Input: saafara al-ra’iisu 'ila Baghdad

Grammar rule: saafara X 'ila Y ↔ X traveled to Y

al-rajulu al-manfiyu allathiy laa yuhibbu al-ţayaraana
Parsing Confusion Networks

• Efficient CKY parsing available
 – Insight: except for the initialization pass (processing terminal symbols), standard CKY already operates on “confusion networks”.

Parsing Confusion Networks

Text

- **Axioms:**

 \[
 [X \to \bullet \gamma, i, i] : w \quad (X \xrightarrow{w} \langle \gamma, \alpha \rangle) \in G
 \]

- **Inferences:**

 \[
 [X \to \alpha \bullet f_{j+1} \beta, i, j] : w
 \]

 \[
 [X \to \alpha f_{j+1} \bullet \beta, i, j + 1] : w
 \]

 \[
 [Z \to \alpha \bullet X \beta, i, k] : w_1
 \]

 \[
 [Z \to \alpha X \bullet \beta, i, j] : w_2
 \]

 \[
 [Z \to \alpha X \bullet \beta, i, j] : w_1 \times w_2
 \]

- **Goal:**

 \[
 [S \to \gamma \bullet, 0, n]
 \]

Confusion Networks

- **Axioms:**

 \[
 [X \to \bullet \gamma, i, i] : w \quad (X \xrightarrow{w} \langle \gamma, \alpha \rangle) \in G
 \]

- **Inferences:**

 \[
 [X \to \alpha \bullet F_{j+1,k} \beta, i, j] : w
 \]

 \[
 [X \to \alpha F_{j+1,k} \bullet \beta, i, j + 1] : w \times p_{j+1,k}
 \]

 \[
 [X \to \alpha \bullet \beta, i, j] : w
 \]

 \[
 [X \to \alpha \bullet \beta, i, j + 1] : w \times p_{j+1,k}
 \]

 \[
 F_{j+1,k} = \epsilon
 \]

 \[
 [Z \to \alpha \bullet X \beta, i, k] : w_1
 \]

 \[
 [Z \to \gamma \bullet, k, j] : w_2
 \]

 \[
 [Z \to \alpha X \bullet \beta, i, j] : w_1 \times w_2
 \]

- **Goal:**

 \[
 [S \to \gamma \bullet, 0, n]
 \]
Model features

<table>
<thead>
<tr>
<th>Hierarchical</th>
<th>Non-hierarchical</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_{LM}</td>
<td>P_{LM}</td>
</tr>
<tr>
<td>$P(\gamma</td>
<td>\alpha)$</td>
</tr>
<tr>
<td>$P(\alpha</td>
<td>\gamma)$</td>
</tr>
<tr>
<td>$P_w(\gamma</td>
<td>\alpha)$</td>
</tr>
<tr>
<td>$P_w(\alpha</td>
<td>\gamma)$</td>
</tr>
<tr>
<td>$P(I_k</td>
<td>\mathcal{G})$</td>
</tr>
<tr>
<td>word penalty</td>
<td>word penalty</td>
</tr>
<tr>
<td>1 non-terminal penalty</td>
<td>distortion</td>
</tr>
<tr>
<td>2 non-terminal penalty</td>
<td></td>
</tr>
</tbody>
</table>

λ_{CN}
Application: spoken language translation

• Experiments
 – Chinese – English (IWSLT 2006)
 • Small standard training bitext (<1M words)
 • Trigram LM from English side of bitext only
 • Spontaneous and read speech from the travel domain
 • Text only development data! ($\lambda_{CN} = \lambda_{LM}$)

 – Arabic – English (BNAT05)
 • UMD training bitext (6.7M words)
 • Trigram LM from bitext and portions of Gigaword
 • Broadcast news and broadcast conversations
 • ASR output development data. (λ_{CN} tuned by MERT)
Chinese-English (IWSLT 2006)

<table>
<thead>
<tr>
<th>Input</th>
<th>WER</th>
<th>Hiero*</th>
<th>Moses*</th>
</tr>
</thead>
<tbody>
<tr>
<td>verbatim</td>
<td>0.0</td>
<td>19.63</td>
<td>18.40</td>
</tr>
<tr>
<td>read, 1-best (CN)</td>
<td>24.9</td>
<td>16.37</td>
<td>15.69</td>
</tr>
<tr>
<td>read, full CN</td>
<td>16.8</td>
<td>16.51</td>
<td>15.59</td>
</tr>
<tr>
<td>spont., 1-best (CN)</td>
<td>32.5</td>
<td>14.96</td>
<td>13.57</td>
</tr>
<tr>
<td>spont., full CN</td>
<td>23.1</td>
<td>15.61</td>
<td>14.26</td>
</tr>
</tbody>
</table>

Noisier signal \rightarrow more improvement

* BLEU, 7 references

$p<0.05$
Performance impact

- The impact on decoding time is minimal
 - Roughly the average depth of the confusion network
 - Similar to the impact in a phrase-based system
 - Moses: 3.8x slower over 1-best baseline
 - Hiero: 4.3x slower over 1-best baseline

- Both systems have efficient disk-based formats available to them
 - Adaptation of Zens & Ney (2007)
Arabic-English (BNAT05)

<table>
<thead>
<tr>
<th>Input</th>
<th>WER</th>
<th>Hiero*</th>
<th>Moses*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verbatim</td>
<td>0.0</td>
<td>26.46</td>
<td>25.13</td>
</tr>
<tr>
<td>1-best</td>
<td>12.2</td>
<td>23.64</td>
<td>22.64</td>
</tr>
<tr>
<td>Full CN</td>
<td>7.5</td>
<td>24.58</td>
<td>22.61</td>
</tr>
</tbody>
</table>

Extremely low WER (audio was part of recognizer training data). Hiero appears to make better use of ambiguity.

* BLEU, 1 reference
Another Application: Decoder-Guided Morphological Backoff

• Morphological complexity makes the sparse data problem even more acute

• Example: Czech \rightarrow English

 – Hypothesis:

 *From the *US* side of the Atlantic all such *odůvodnění* appears to be *a totally bizarre.*

 – Target:

 From the American side of the Atlantic, all of these rationales seem utterly bizarre.
Solving the morphology dilemma with confusion networks

• Conventional solution: reduce morphological complexity by removing morphemes
 • Lemmatize (Goldwater & McCloskey 2005)
 • Truncate (Och)
 • Collapse meaningless distinctions (Talbot and Osborne, 2006)
 • Backoff for words you don’t know how to translate (Yang and Kirchhoff)

 – Problem: the removed morphemes contain important translation information

• Surface only:

 From the US side of the Atlantic all such odůvodnění appears to be a totally bizarre.

• Lemma only:

 From the [US] side of the Atlantic with any such justification seem completely bizarre.
Solving the morphology dilemma with confusion networks

- Use confusion networks to give access to both representations.

- Use surface forms if it makes sense to do so, otherwise back off to lemmas, with individual choices *guided by the model*.

- Create single grammar by combining the rules from both grammars.

- Variety of cost assignment strategies available.

<table>
<thead>
<tr>
<th>z</th>
<th>amerického</th>
<th>břehu</th>
<th>atlantiku</th>
<th>veskerá</th>
<th>taková</th>
<th>odůvodnění</th>
<th>jeví</th>
<th>jako</th>
<th>naprosto</th>
<th>bizarní</th>
<th>.</th>
</tr>
</thead>
<tbody>
<tr>
<td>americký</td>
<td>břeh</td>
<td>atlantik</td>
<td>s</td>
<td>takový</td>
<td></td>
<td></td>
<td>jevit</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Czech-English results

<table>
<thead>
<tr>
<th>Input</th>
<th>BLEU*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface forms only</td>
<td>22.74</td>
</tr>
<tr>
<td>Backoff (~ Yang & Kirchhoff 2006)</td>
<td>23.94</td>
</tr>
<tr>
<td>Lemmas only</td>
<td>22.50</td>
</tr>
<tr>
<td>Surface+Lemma (CN)</td>
<td>25.01</td>
</tr>
</tbody>
</table>

- Improvements for using CNs are significant at $p<.05$, CN > surface at $p < .01$
- Best system on Czech-English task at WMT’07 on all evaluation measures.

- WMT07 training data (2.6M words), trigram LM

* 1 reference translation
Confusion Networks Summary

• Keeping as much information as possible is a good idea.
 – Alternative transcription hypotheses from ASR
 – Full morphological information

• Hierarchical phrase-based models outperform conventional models
 – Higher absolute baseline
 – Better utilization of ambiguity in the signal
 (cf. Arabic results)

• Decoding ambiguous input can be done efficiently

• Current work: Arabic morphological backoff
Roadmap

• Brief review of Hiero
• New developments
 – Confusion network decoding (Dyer)
 – Suffix arrays for richer features (Lopez)
 – Paraphrase to improve parameter tuning (Madnani)
• Summary and conclusions
Standard Decoder Architecture
Standard Decoder Architecture

parallel text + alignment

extract rules

score rules

limit phrase length & filter rules for test set

load filtered rules into memory

decoding algorithm

Much larger training set

Much larger phrase table
Alternative Decoder Architecture
(Callison-Burch et al., Zhang and Vogel et al.)

Look up (or sample from) all e for substring f
Hierarchical Phrase Based Translation with Suffix Arrays

• Key idea: instead of pre-tabulating information to support features like $p(e|f)$, look up instances of f in the training bitext, on the fly

• Facilitates:
 – Scaling to large training corpora
 – Use of arbitrary length phrases
 – Ability to decode without test set specific filtering
 – Features that use broader context
 – Features that use corpus annotations
Example
(using English as source language for readability)

Input Pattern

it persuades him and it disheartens him

Query Patterns

it
persuades
him
and
disheartens
it persuades
him
and
and it
disheartens
it disheartens him
it persuades him
persuades him and it
and it disheartens
it disheartens him
it persuades him and it
persuades him and it
him and it disheartens
and it disheartens him
it persuades him and it
disheartens him
Looking source patterns up on the fly

... y él parece que ...
... discussed the issue with her and it seems as if ...
... mejor pero él ...
... offered the organization a better alternative and it ...
... y el otro. ...
... built between the new building and it. After proposing ...
Efficient Pattern Matching

- If the F side of the bitext is indexed using a suffix array, lookup of all matches can be done very quickly.
Example (using English as source language for readability)

it makes him and it mars him. it sets him on and it takes him off. #

3 and it mars him. it sets him on and it takes him off. #
12 and it takes him off. #
2 him and it mars him. it sets him on and it takes him off. #
15 him off. #
10 him on and it takes him off. #
6 him. it sets him on and it takes him off. #
0 it makes him and it mars him. it sets him on and it takes him ...
4 it mars him. it sets him on and it takes him off. #
;
; ...
it persuades him and it disheartens him

Query pattern w

and it

and it mars him. it sets him ...
and it takes him off. #
him and it mars him. it sets ...
him off. #
him on and it takes him off. #
him. it sets him on and it ...
it makes him and it mars ...
it mars him. it sets him on ...
it sets him on and it takes ...
it takes him off. #
makes him and it mars him ...
Problem: patterns with gaps
(using English as source language for readability)

Input Pattern: it persuades him and it disheartens him

Query Patterns:
- it X and
- it X it
- it X disheartens
- it X him
- persuades X it
- persuades X disheartens
- persuades X him
- it persuades X it
- it persuades X disheartens
- it persuades X him
- it X and it
- it X it disheartens

- it X disheartens him
- it X and X him
- persuades him X disheartens
- persuades him X him
- persuades X it disheartens
- persuades X disheartens him
- him and X him
- him X disheartens him
- it persuades him X disheartens
- it persuades him X him
- it persuades X it disheartens
- it persuades X disheartens him
• Instances of pattern are no longer contiguous in suffix array

• Naïve approaches (e.g. using intersection of subpatterns) are very inefficient – baseline timing result is that decoding takes 2241 seconds per sentence!

Query pattern: him X it

and it takes him off . #
him and it mars him . it sets ...
him off . #
him on and it takes him off . #
him . it sets him on and it ...
Algorithmic extensions

• Exploiting redundancy using prefix tree with suffix links (Zhang and Vogel 2005)
• Double binary search (Baeza-Yates 2004) for cases where there is an infrequent subpattern
• Precomputation for cases where there are multiple frequent subpatterns
• Caching
Timing Results

- Baseline: 2,241 seconds/sentence
- Prefix Tree: 1,591
- Prefix Tree + DB: 411
- Prefix Tree + precomp.: 687
- Prefix Tree + both: 41
- All + Cache: 31
Applications

• Sampling for feature value estimation
• Features based on context
• Features based on annotations

• Take-home message: the suffix array framework allows very rapid exploration of a larger feature space.
Roadmap

• Brief review of Hiero
• New developments
 – Confusion network decoding (Dyer)
 – Suffix arrays for richer features (Lopez)
 – Paraphrase to improve parameter tuning (Madnani)
• Summary and conclusions
Using paraphrases to improve parameter tuning

• Virtually all SMT systems tune model parameters by optimizing an objective function that compares decoder output to reference translations (e.g. BLEU).

• It’s widely accepted that multiple references per translation are better.

• But references are expensive to obtain.

• Could we exploit a quantity/quality tradeoff by increasing the number of references artificially?
Example

H: the cat was devoured by the canine

R₁: the dog ate the cat
R₂: the cat was devoured by the dog
R₃: the dog devoured the cat
R₄: the feline was eaten by the canine
Paraphrase as English-to-English translation
Examples
(Europarl, using French as pivot)

we must bear in mind the community as a whole.
we must remember the wider community.

they should be better coordinated and more effective.
they should improve the coordination and efficacy.

women are still one of the most vulnerable sections of society, whose rights are rudely trampled underfoot by the current social and economic system.
they remain one of the weakest in society, whose duties are abruptly scorned by the present social and economic order.

that is what we are waiting to hear from the European Commission.
that is what we expected from the meeting.

this occurred not far away and not very long ago.
this substance not far behind and very recently.
Examples
(NIST’03 test set using Chinese as pivot)

the copy of the ultimatum has been sent to un security council .
the text of the ultimatum was rushed to the security council .

france circulated its proposal in the form of a " non-official paper ".
french transmits its recommendations to serve as a " non-official document ".

(hong kong , macao and taiwan) macao passes bill to avoid double taxation
(hong kong , macau and taiwan) macau adopts draft avoidance of double taxation

however , people know little about the cause of the disease so far .
however , persons are not sure present cause .

however , many experts said that technically speaking alone . the time for the
deployment of a missile defense system was not ripe .
however , many experts believe that the new site alone , the duration of deploy a
missile defense system immature .
Experiment

- Source Language: Chinese
- Training: newswire parallel text (850000 sentences)
- Dev set: NIST MT’03 (919 sentences)
- Test set: NIST MT’05 (1082 sentences)
- LM: SRILM trigram model with modified Kneser-Ney smoothing, 155M words
- Metrics: BLEU-4 and TER (lowercased)
Results

- Score tuning on four human references is matched (statistically) with only two human references needed.
- “Standard” (for NIST) four references can still improve.
- Potentially more interesting scenario, since any bitext provides one human reference translation per source sentence.
- Raises the possibility of topic and genre-specific parameter tuning.
Conclusions

• Hiero is both a framework and a strategy for bringing more linguistically relevant properties into statistical MT
 – Start with hierarchy, lexically anchored reordering
 – Be driven by parallel data, not by monolingual analysis
 – Embrace and extend phrase-based ideas that work well
 – Tackle cross-cutting challenges (e.g. more ref translations)
Thanks and acknowledgements

- The work presented would not have been possible without the many good ideas and generous assistance from the following people:

 Nicola Bertoldi
 David Chiang
 Marcello Federico
 Ian Lane
 Lidia Mangu
 Smaranda Muresan
 Daniel Zeman
 Richard Zens
And thank you!