Improving Trees and **Alignments for Syntax-Based Machine Translation Kevin Knight USC/Information Sciences Institute**

joint work with Steven DeNeefe, Daniel Marcu,

Wei Wang, and Jonathan May

SRI, July 12, 2007

Syntactic Approaches to MT

- Use of syntactic information (noun, verb, etc) in the translation process:
 - Manually constructed rule-based systems
 - Statistical systems
 - Wu & Wong, 1998
 - Yamada & Knight, 2001-2002
 - Galley et al, 2004
 - Contrast with phrase-based statistical approaches

枪手 被 警方 击毙 Gunman of police attack

被 警方 击毙 枪手 Gunman killed by police .

Decoder Hypothesis #50,654

Problematic -

- Output lacks English auxiliary and determiner
- Re-ordering relies on luck, instead of on Chinese passive marker

Syntax-Based Output

Syntax-Based Output

Syntax-Based Output

Why Might Syntax Help?

- Phrase-based MT output is "n-grammatical", not grammatical
 - Every sentence needs a subject and a verb
- Re-ordering is poorly explained as "distortion" -better explained as syntactic transformation

 Arabic to English, VSO → SVO
- Function words have syntactic effects even if they are not themselves translated

Why Might Syntax Hurt?

- Less freedom to glue pieces of output together -- search space has fewer output strings
- Search space is more difficult to navigate
- Rule extraction from bilingual text has limitations

this talk

Why Might Syntax Hurt?

- Less freedom to glue pieces of output together -- search space has fewer output strings
- Search space is more difficult to navigate
- Rule extraction from bilingual text has limitations

this talk

Why Might Syntax Hurt?

- Less freedom to glue pieces of output together -- search space has fewer output strings
- Search space is more difficult to navigate
- Rule extraction from bilingual text has limitations

Comparing Phrase-Based Extraction with Syntax-Based Extraction

- Quantitatively compare
 - A typical phrase-based bilingual extraction algorithm (ATS, Och & Ney 2004)
 - A typical syntax-based bilingual extraction algorithm (GHKM, Galley et al 2004)
 - These algorithms picked from two goodscoring NIST-06 systems
- Identify areas of improvement for syntaxbased rule coverage

Phrase-Based and Syntax-Based Pattern Extraction

i felt	obliged	to do	my	part
		± /		T
我有	ī 责任	尽一	份	力

PHRASE PAIRS ACQUIRED:

felt→ 有felt obliged→ 有责任felt obliged to do→ 有责任 尽obliged→ 责任obliged to do→ 责任 尽do→ 大part→ 一份part→ 一份 力

PHRASE PAIRS ACQUIRED:

felt	→ 有
felt obliged	→ 有 责任
felt obliged to (10 → 有责任 尽
obliged	→ 责任
obliged to do	→ 责任 尽
do	→ 尽
part	→ 一份
part	→ 一份 力

PHRASE PAIRS ACQUIRED:

felt \rightarrow 有felt obliged \rightarrow 有责任felt obliged to do \rightarrow 有责任obliged \rightarrow 责任obliged to do \rightarrow 责任obliged to do \rightarrow 责任do \rightarrow 责任part \rightarrow 一份part \rightarrow 一份力

RULES ACQUIRED:			
VBD(felt)	→ 有		
VBN(obliged)	→ 责任		
VP(x0:VBD VP-C(x1:VBN x2:SG-C) \rightarrow x0 x1 x2			
VP(VBD(felt) VP-C(VBN(obliged)) x0:SG-C) → 有 责任 x0			
S(x0:NP-C x1:VF	P) $\rightarrow x0 x1$		

minimal rules tile the tree/string/alignment triple. **composed** rules are made by combining those tiles.

GHKM Syntax Rules

GHKM Syntax Rules

ATS and GHKM Methods Do Not Coincide

ATS and GHKM Methods Overlap

ATS and GHKM Methods Overlap

Four Ideas for Improving Syntax-Based Rule Extraction

- Acquire larger rules
 Composed rules (Galley et al, 06)
 Phrasal rules (Marcu et al, 06)
- Acquire more general rules
 Re-structure English trees (Wang et al, 07)
 Re-align tree/string pairs (May & Knight, 07)

Larger, Composed Rules

Minimal GHKM Rules:

B(e1 e2) → c1 c2 C(e3) → c3 A(x0:B x1:C) → x0 x1

Additional Composed Rules:

A(B(e1 e2) x0:C) -> c1 c2 x0 A(x0:B C(e3)) -> x0 c3 A(B(e1 e2) C(e3)) -> c1 c2 c3 * * big phrasal rule"

Larger, Composed Rules

Minimal GHKM Rules:

B(e1 e2) → c1 c2 C(e3) → c3 A(x0:B x1:C) → x0 x1

Additional Composed Rules:

A(B(e1 e2) x0:C) -> c1 c2 x0 A(x0:B C(e3)) -> x0 c3 A(B(e1 e2) C(e3)) -> c1 c2 c3

"big phrasal rule"

Larger, Composed Rules

Minimal GHKM Rules:

B(e1 e2) → c1 c2 C(e3) → c3 A(x0:B x1:C) → x0 x1

Additional Composed Rules:

A(B(e1 e2) x0:C) -> c1 c2 x0 A(x0:B C(e3)) -> x0 c3 A(B(e1 e2) C(e3)) -> c1 c2 c3

"big phrasal rule"

Larger, Composed Rules

Minimal GHKM Rules:

B(e1 e2) → c1 c2 C(e3) → c3 A(x0:B x1:C) → x0 x1

Additional Composed Rules:

A(B(e1 e2) x0:C) -> c1 c2 x0 A(x0:B C(e3)) -> x0 c3 A(B(e1 e2) C(e3)) -> c1 c2 c3

"big phrasal rule"

Larger, Composed Rules

Composed limit (internal nodes in composed rule)	# of rules acquired	Unacquired phrase pairs used in ATS 1- best decodings
0 = minimal	2.5m	1994
2	12.4m	1478
3	26.9m	1096
4	55.8m	900

"Phrasal" Syntax Rules

- SPMT Model 1 (Marcu et al 2006)
 - consider each foreign phrase up to length L
 - extract smallest possible syntax rule that does not violate alignments

Method	Unacquired ATS Phrase Pairs
Minimal	1994
Composed 4	900
SPMT M1	676
Both	663

Restructuring English Training Trees

Restructuring English Training Trees

Method	Unacquired ATS Phrase Pairs
Minimal	1994
+ Composed 4	900
+ SPMT M1	663
+ Restructuring	458

Effects of Coverage Improvements on Syntax-Based MT Accuracy

	Chinese/English Trained on 9.8m words		Arabic/English Trained on 4.1m words	
	Dev-02	Test-03	Dev-02	Test-03
ATS	36.00	34.31	50.88	51.04
GHKM minimal	39.11	38.85	49.81	50.46
GHKM composed 2	41.59	40.90	51.18	51.52
GHKM composed 3	42.28	41.62	51.96	52.04
GHKM composed 4	42.63	41.82	52.05	52.26
GHKM minimal + SPMT	41.01	40.34	50.74	51.81
GHKM composed 4 + SPMT	43.30	42.17	52.15	52.12
+ Left binarization of etrees	43.45	42.41	52.86	52.42

NIST Bleu r4n4

Can We Do Better?

- Improved binarization methods
- Improved word alignment of tree/string pairs

Why are Penn Treebank Trees Problematic?

?

维克多·切尔诺梅尔金 及 其 同事

Why are Penn Treebank Trees Problematic?

?

维克多·切尔诺梅尔金 及 其 同事

Binarizing English Trees

Simple Binarizations

Parallel Binarization

Parallel Binarization

Forest-Based Rule Extraction

- Gets all minimal rules consistent with word alignment and some binarization
- Run EM algorithm to determine best binarization of each node in each tree

e-tree

f-string, alignment

 parallel binarization → e-forest e-tree

f-string, alignment

Experimental Results

Type of Binarization	# of Rules Learned	Test Bleu (NIST-03)
None	63.4m	36.94
Left	114.0m	37.47 (p=0.047)
Right	113.0m	37.49 (p=0.044)
Head	113.8m	37.54 (p=0.086)
EM	115.6m	37.94 (p=0.0047)

Last Topic: Alignment

- GIZA++ string-based alignments
 - are errorful
 - don't match our syntax-based MT system
- Would like to use the tree-based translation model to align data

Last Topic: Alignment

Conclusions

- Phrase-based and syntax-based extraction algorithms have different coverage.
- Syntax-based coverage can be improved:
 - composed rules
 - phrasal rules
 - binarizing English trees with EM
 - re-aligning tree/string pairs with EM
- Improvements lead to better translation accuracy.

the end