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Syntactic Approaches to MT

« Use of syntactic information (noun, verb,
etc) In the translation process:

— Manually constructed rule-based systems

— Statistical systems
 Wu & Wong, 1998
 Yamada & Knight, 2001-2002
o Galley et al, 2004

— Contrast with phrase-based statistical
approaches



Phrase-Based Output
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Phrase-Based Output
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Phrase-Based Output
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Phrase-Based Output
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Gunman killed the police . Decoder
Hypothesis #9,329




Phrase-Based Output

Gunman killed by police . Decoder
Hypothesis #50,654
Problematic —

- Output lacks English auxiliary and determiner
- Re-ordering relies on luck, instead of on
Chinese passive marker
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Syntax-Based Output
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Why Might Syntax Help?

 Phrase-based MT output is “n-grammatical”, not
grammatical
— Every sentence needs a subject and a verb

e Re-ordering is poorly explained as “distortion” --
better explained as syntactic transformation

— Arabic to English, VSO - SVO

« Function words have syntactic effects even if they
are not themselves translated



Why Might Syntax Hurt?

* Less freedom to glue available
pieces of output phrase-based
together -- search
space has fewer output g
strings

e Search space is more
difficult to navigate

 Rule extraction from
nilingual text has
Imitations
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Comparing Phrase-Based Extraction
with Syntax-Based Extraction

e Quantitatively compare

— A typical phrase-based bilingual extraction
algorithm (ATS, Och & Ney 2004)

— A typical syntax-based bilingual extraction
algorithm (GHKM, Galley et al 2004)

— These algorithms picked from two good-
scoring NIST-06 systems

 |dentify areas of improvement for syntax-
based rule coverage



Phrase-Based and Syntax-Based
Pattern Extraction

estring . = = = = - - == = - - == = - - == =
alignment .,

CStriNg = = = = ‘= - = == = - - == o= - - mom =

phrase pairs consistent with word alignment

alignment °., .
cstring = I
v
GHKM [Galley et al 2004]

syntax transformation rules consistent with word alignment




ATS (Och & Ney, 2004)

PHRASE PAIRS ACQUIRED:
felt > 8

felt obliged > B RE

felt obligedtodo > B HE R

obliged > RE
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ATS (Och & Ney, 2004)

PHRASE PAIRS ACQUIRED:

felt
It obliged
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felt obligedtodo > B Z=E R
obliged > RE
obligedtodo > J"ER

do > R
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part > —f 8




GHKM (Galley et al, 2004)
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GHKM (Galley et al, 2004)
s lf:> RULES ACQUIRED:

NP-C VP,
SG-C
/ VP VBN(obliged) > H={F
VBN N
TO  VP-C VP(x0:VBD
VB~ " NP-C VP-C(x1:VBN
NPB NPB x2:SG-C) > x0 x1 x2
| PN
PRP PRP$ NN VP(VBD(felt)

VP-C(VBN(obliged
| felt\obliged to do my part (x0 sg) c')g ee))ﬁ AL X0

E\*//

S(x0:NP-C x1:VP) - X0 x1

;
LLd
T\



GHKM (Galley et al, 2004)

— 13

VP-C
> NP-C
NPB

VB
/ /\
PRP$ NN
O

do my part

s

7

VBD(felt)

l_l//:> RULES ACQUIRED:

> B

@ged) > B

VP(x0:VBD
VP-C(x1:VBN

x2:5G-C) - x0 x1 x2

VP(VBD(felt)
VP-C(VBN(obliged))

S(x0:NP-C x1:VP)

Xx0:SG-C) > B T x0

- x0 x1



GHKM (Galley et al, 2004)
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GHKM (Galley et al, 2004)
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GHKM (Galley et al, 2004)
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GHKM (Galley et al, 2004)
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minimal rules tile the tree/string/alignment triple.
composed rules are made by combining those tiles.



GHKM Syntax Rules

Phrasal Translation

VP — esta cantando
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VBZ VBG

| |
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ATS and GHKM Methods Do Not Coincide

GHKM Phrase Pairs
Relevant to NIST-02

ATS Phrase Pairs

4 ) Relevan
43k 4 134k\
GHKM has no N 161k N
built-in phrase size
N\

limit -- ATS does. /

t to NIST-02

GHKM misses
——  phrases due to
parse failures.

unaligned English

to incorporate some

VNN
GHKM pulls / \ GHKM forced

words into phrases.

GHKM only gets

minimal rules to
explain each
segment pair.

GHKM forced
to incorporate

unaligned English
words into phrases.

unaligned foreign
words into phrases.

GHKM phrases
come with
applicability
conditions.
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Four Ideas for Improving
Syntax-Based Rule Extraction

e Acquire larger rules
Composed rules (Galley et al, 06)
Phrasal rules (Marcu et al, 06)
 Acquire more general rules

Re-structure English trees (Wang et al, 07)
Re-align tree/string pairs (May & Knight, 07)



Larger, Composed Rules

A Minimal GHKM Rules:

B(el e2) > clc2
C(e3) - c3
A(x0:B x1:C) - x0 x1

Additional Composed Rules:

A(B(el e2) x0:C) ->cl c2 x0
A(x0:B C(e3)) -> x0 c3
e3 A(B(el e2) C(e3)) -> ¢l c2 ¢c3

= e \

“big phrasal rule”
cl c2 c3
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Larger, Composed Rules

Composed limit # of rules |Unacquired
(internal nodes In acquired phrase pairs
composed rule) used in ATS 1-
best decodings
0 = minimal 2.5m 1994
2 12.4m 1478
3 26.9m 1096
4 55.8m 900




“Phrasal” Syntax Rules

« SPMT Model 1 (Marcu et al 2006)

— consider each foreign phrase up to length L

— extract smallest possible syntax rule that does
not violate alignments

Method Unacquired ATS
Phrase Pairs
Minimal 1994
Composed 4 900
SPMT M1 676
Both 663




Restructuring English Training
Trees
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Restructuring English Training

Trees
Method Unacquired ATS
Phrase Pairs
Minimal 1994
+ Composed 4 900
+ SPMT M1 663
+ Restructuring 458




Effects of Coverage Improvements on
Syntax-Based MT Accuracy

Chinese/English

Trained on 9.8m words

Arabic/English

Trained on 4.1m words

Dev-02 | Test-03 | Dev-02 | Test-03
ATS 36.00 h 50.88 b
GHKM minimal 39.11| 38.85| 49.81| 50.46
GHKM composed 2 41.59| 40.90| 51.18| 51.52
GHKM composed 3 42.28| 41.62| 51.96| 52.04
GHKM composed 4 42.63| 41.82| 52.05| 52.26
GHKM minimal + SPMT 41.01| 40.34| 50.74| 51.81
GHKM composed 4 + SPMT 43.30| 42.17| 52.15| 52.12
+ Left binarization of etrees 43.45| 42.41 52.86| 52.42

NIST Bleu r4n4




Can We Do Better?

mproved binarization methods

mproved word alignment of tree/string
pairs




Why are Penn Treebank Trees
Problematic?
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Binarizing English Trees
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Parallel Binarization
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Parallel Binarization
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Forest-Based Rule Extraction

o Gets all minimal rules consistent with word
alignment and some binarization

 Run EM algorithm to determine best
binarization of each node Iin each tree



Binarization Using EM

e-tree

f-string,
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Binarization Using EM
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Binarization Using EM
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Binarization Using EM

e-tree  — (parallel binarization e-forest
f-string, /

alignment

forest-based extraction
of minimal rules

?7?7?

derivation forests

l

binarized project e-tree )« viterbi derivation @
e-tree for each example

composed rule extraction

v

— rules for decodin
(Galley et al., 2006) J



Experimental Results

Type of # of Rules Test Bleu (NIST-03)
Binarization |Learned

None 63.4m 36.94

_eft 114.0m 37.47 (p=0.047)
Right 113.0m 37.49 (p=0.044)
Head 113.8m 37.54 (p=0.086)

EM 115.6m 37.94 (p=0.0047)




TOP

| Tree binarized by EM training
5
S—BAR/\
NP S-BAR ‘

. /\SBA .

A7

JJ NN NP-C VP
|
last VEAT NFPB VED NP-C
|
ol NFPB-BAR was NPE
|
the NN NPB-BAR QP NPBE-BAR
AN
total VBN NFPB-BAR CcD CcD NINF NNS
achieverd NML NN 10.99 billion us dollars
NN cC NN volume

import ancd export



Last Topic: Alignment

 GIZA++ string-based alignments
— are errorful
— don’t match our syntax-based MT system

 Would like to use the tree-based
translation model to align data



English trees
Foreign strings

|

Last Topic: Alignment

m,

T

alignments

away
GIZA
alignments

GIZA++ — initial word — | GHKM syntax

rule extraction

— minimal

rules

Details in May & Knight, 07

Result: +0.5-1.0 Bleu

EM alignment

(“Training Tree
Transducers”,

Graehl & Knight'04)

|

Viterbi derivations
- Improved word
alignments

|

GHKM syntax
rule extraction

'

better rules
for decoding




Conclusions

Phrase-based and syntax-based extraction
algorithms have different coverage.

Syntax-based coverage can be improved:
— composed rules

— phrasal rules

— binarizing English trees with EM

— re-aligning tree/string pairs with EM

Improvements lead to better translation
accuracy.



the end



