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Notation:

Problem Definition

keyword

keyword phoneme sequence

alignment sequence

bought

bcl b ao t

k

p̄

s̄ s1 s2 s3 s4e4

x̄ = (x1,x2,x3, . . . xT )
acoustic feature vectors
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Keyword 
Spotter

predicted 
decisionspeech 

signal

Problem Definition

keyword 
(phoneme 
sequence)

x̄

p̄ = /b ao t/

detection (yes/no)

s̄′

predicted 
alignment

f(x̄, p̄)
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Fat is Good
The performance of a keyword spotting system is 
measured by a Receiver Operating Characteristics 
(ROC) curve.

true positive = 

detected utterances with keywords

total utterances with keywords

false positive = 

detected utterances without keywords

total utterances without keywords
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HMM-based Keyword Spotting 
Whole Word Modeling

bought

10 ms

x̄

q̄

[Rahim et al, 1997; Rohlicek et al, 1989]
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HMM-based Keyword Spotting 
Phoneme-Based

p̄

x̄

q̄

[Bourlard et al, 1994; Manos & Zue, 1997; Rohlicek et al, 1993]

garbage bought
h iy b ao t tih

10 ms

garbage
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• Linguistic constraints on the garbage 
model 

• Does a human listener need to have a 
large vocabulary in order to 
recognize one word? 

HMM-based Keyword Spotting 
Large Vocabulary Based

(Cardillo et al, 2002; Rose & Paul, 1990; Szoke et al, 2005; Weintraub, 1995)
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HMM Approaches to 
Keyword Spotting

• Do not address specifically the goal of 
maximizing the area under the 
ROC curve for the task of keyword spotting
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Discriminative Approach
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Learning Paradigm
Discriminative learning from examples

S = {(p̄1, x̄+
1 , x̄−1 , s̄1), . . . , (p̄m, x̄+

m, x̄−m, s̄m)}
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Learning Paradigm
Discriminative learning from examples

S = {(p̄1, x̄+
1 , x̄−1 , s̄1), . . . , (p̄m, x̄+

m, x̄−m, s̄m)}

alignment of the 
keyword and the utterance 

with keyword
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Learning Paradigm
Discriminative learning from examples
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Learning Paradigm
Discriminative learning from examples

f(x̄, p̄)Keyword spotter

S = {(p̄1, x̄+
1 , x̄−1 , s̄1), . . . , (p̄m, x̄+

m, x̄−m, s̄m)}

Class of all keyword 

spotting functions

Discriminative 

Keyword 

Spotting
Fw
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Learning Paradigm
Discriminative learning from examples

f(x̄, p̄)Keyword spotter

S = {(p̄1, x̄+
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Discriminative 

Keyword 

Spottingw ∈ R
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f(x̄, p̄) = max
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w · φ(x̄, p̄, s̄)
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Feature Functions

We define 7 feature functions of the form:

sequence of 
acoustic features

keyword 
(phoneme 
sequence)

Suggested 
alignment

Feature 
Functions(x̄, p̄)

R
φjs̄

Confidence in 
the keyword 
and suggested 
alignment



Joseph Keshet, The Hebrew University

Cumulative spectral change around the boundaries

Feature Functions I

si−j + si j + si

φj(x̄, p̄, s̄) =
|p̄|−1∑

i=2

d(x−j+si ,xj+si), j ∈ {1, 2, 3, 4}



Joseph Keshet, The Hebrew University

Cumulative spectral change around the boundaries

Feature Functions I

si−j + si j + si

φj(x̄, p̄, s̄) =
|p̄|−1∑

i=2

d(x−j+si ,xj+si), j ∈ {1, 2, 3, 4}



Joseph Keshet, The Hebrew University

pi = ehpi−1 = t

. . .. . . . . .

si−1 si si+1

φ5(x̄, p̄, s̄) =
|p̄|∑

i=1

si+1−1∑

t=si

g(xt, pi)

Cumulative confidence in the phoneme sequence

Feature Functions II



Joseph Keshet, The Hebrew University

pi = ehpi−1 = t

. . .. . . . . .

si−1 si si+1

φ5(x̄, p̄, s̄) =
|p̄|∑

i=1

si+1−1∑

t=si

g(xt, pi)

Cumulative confidence in the phoneme sequence

                is the confidence that 
phoneme      was uttered at 
frame    
[Dekel, Keshet, Singer, ‘04]

We build a static frame-based 
phoneme classifier

g : X × Y → R

g(xt, pi)

xt

pi

Feature Functions II
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pi = ehpi−1 = t
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si+1 − sisi − si−1

Phoneme duration model  

Feature Functions III

φ6(x̄, p̄, s̄) =
|p̄|∑

i=1

log N (si+1 − si; µ̂pi , σ̂pi)
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si+1 − sisi − si−1

Phoneme duration model  

Feature Functions III

- average length of phoneme 

- standard deviation of the  
length of phoneme 

pi

pi

µ̂pi

σ̂pi

φ6(x̄, p̄, s̄) =
|p̄|∑

i=1

log N (si+1 − si; µ̂pi , σ̂pi)
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si+1 − sisi − si−1

Phoneme duration model  

Feature Functions III
Statistics of 
phoneme pi

φ6(x̄, p̄, s̄) =
|p̄|∑

i=1

log N (si+1 − si; µ̂pi , σ̂pi)
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Speaking-rate modeling (“dynamics”)

Spectogram at different rates of articulation (after Pickett, 1980)

Feature Functions IV

φ7(x̄, p̄, s̄) = −
|p̄|−1∑

i=2

(
si+1 − si

µ̂pi

− si − si−1

µ̂pi−1

)2
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Learning Paradigm
Discriminative learning from examples

f(x̄, p̄)Keyword spotter

S = {(p̄1, x̄+
1 , x̄−1 , s̄1), . . . , (p̄m, x̄+

m, x̄−m, s̄m)}
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Large-Margin Model

φ(x̄+, p̄, s̄)φ(x̄−, p̄, s̄′)

φ(x̄−, p̄, s̄′′)
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Large-Margin Model

φ(x̄+, p̄, s̄)φ(x̄−, p̄, s̄′)

φ(x̄−, p̄, s̄′′)

positive utterance
with correct
alignment
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Large-Margin Model
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Large-Margin and Noise
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Large-Margin Derivation
w

d

φ(x̄+, p̄, s̄)φ(x̄−, p̄, s̄′)

φ(x̄−, p̄, s̄′′)

d =
w · φ(x̄+, p̄, s̄)−w · φ(x̄−, p̄, s̄′)

‖w‖

w · φ(x̄+, p̄, s̄)−w · φ(x̄−, p̄, s̄′) ≥ 1 ∀s̄′
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Iterative Algorithm
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! = arg min 1

2
‖w‖2 such that

S = {(p̄j , x̄+
j , x̄−j , s̄j)}
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′) ≥ 1 ∀j ∀s̄′
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Iterative Algorithm
Approximation: Replace exponentially many 
constraints with a single (most violated) constraint. 

Define:  

{wj = arg min
1
2
‖w −wj−1‖2 such that

w · φ(x̄+
j , p̄j , s̄j)−w · φ(x̄−j , p̄j , s̄

′) ≥ 1

s̄′ = arg max
s̄

wj−1 · φ(x̄−j , p̄j , s̄)
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Iterative Algorithm
Approximation: Replace exponentially many 
constraints with a single (most violated) constraint. 

Define:  

{wj = arg min
1
2
‖w −wj−1‖2 such that

w · φ(x̄+
j , p̄j , s̄j)−w · φ(x̄−j , p̄j , s̄

′) ≥ 1

wj = wj−1 +
1−wj−1∆φ

‖∆φ‖2

∆φ = w · φ(x̄+
j , p̄j , s̄j)−w · φ(x̄−j , p̄j , s̄

′)

s̄′ = arg max
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Iterative Algorithm
Input: training set

Initialize: 

For each example 

 Predict:

   Set: 

 If 

   Update: 

Output Choose        which attains the lowest cost 
on a validation set. 

w0 = 0

wj = wj−1 +
1−wj−1∆φ

‖∆φ‖2

wj

(p̄j , x̄+
j , x̄−j , s̄j)

S = {(p̄j , x̄+
j , x̄−j , s̄j)}

s̄′ = arg max
s̄

wj−1 · φ(x̄−j , p̄j , s̄)

∆φ = φ(x̄+
j , p̄j , s̄j)− φ(x̄−j , p̄j , s̄

′)

w · ∆φ ≤ 1
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Formal Properties
• Convex optimization problem - single minimum

• Worse case analysis: Area Under Curve during 
the training phase is high

• The expected Area Under Curve on unseen 
examples is high in probability

1−A ≤ 1
m

m∑

i=1

!(w!) +
‖w!‖2

m
+O

(
ln(m/δ),

1
√

mval

)

1− Ã ≤ 1
m
‖w!‖2 +

2C

m

m∑

i=1

!(w!)
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Experimental Results
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Training Setup
• TIMIT corpus
• Phoneme representation:

–  39 phonemes (Lee & Hon, 1989)

• Acoustic Representation:
– MFCC+∆+∆∆ (ETSI standard)

• TIMIT training set:
– 500 utterances for training set of the feature 

functions 
– 3116 utterance used for training set
– 80 utterances used for validation (40 keywords)
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Results on TIMIT
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Results on WSJ

Area under the 
ROC curve:
0.94 discriminative
0.88 HMM

model trained on 
TIMIT, same 80 new 
keywords, and for 
each, 20 positive 
and 20 negative 
utterances from 
si_tr_s part of WSJ
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Practicalities & Algorithms
• The quadratic programming

– Algorithm for solving the quadratic 
programming with exponential number of 
constraints 
[Keshet, Grangier and Bengio, 2006] 

• Training the feature function classifiers
– Hierarchical phoneme classifier

[Dekel, Keshet and Singer, 2004]

• Non-separable case
– Common technique in training soft SVM

[Cristianini & Shawe-Taylor, 2000; Vapnik, 1998]
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