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Speaker Recognition
Speaker identification
• Closed set of speakers
• Test speaker one in set
• 1-in-n classification

Speaker verification
• Single target speaker
• Test speaker is target speaker or unknown
• Binary classification (detection) task
• Focus of this talk

– more fundamental, widely researched
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Speaker Verification - Metrics
Equal error rate (EER)
• False reject probability = false accept probability

Detection cost function (DCF) =
• P(FR) C(FR) P(target) + P(FA) C(FA) (1-P(target))
• C(FR), C(FA), P(target)
application-dependent

DET plots
Detection
Error
Tradeoff
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High-level Structure of SR System

1. Audio data

2. Feature extraction

3. Modeling training ⇒ target speaker model

4. Model testing: apply speaker model to test 
speaker features ⇒ verification score s

5. Classification:
s > T ⇒ same speaker
s < T ⇒ different speaker (impostor) 
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Features for SR
“Low-level” (classical approach)
• Short-term spectral features (e.g., 25 ms)
• No sequence modeling (beyond delta features)
• Reflect vocal tract shape - GOOD
• Highly dependent on channel, environment - BAD

“High-level” (relatively recent)
• Longer-term extraction region AND/OR 
• Based on linguistic units (words/syllables/phones)
• Tend to reflect stylistic aspects of speech - GOOD
• Requires complex features or ASR - BAD
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Features - Examples

Low-level:
• Mel frequency or PLP cepstrum
• Pitch

High-level
• Word/Phone conditioned low-level features
• Pitch contours
• Phone durations
• Phone/word token sequences
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Modeling of Speaker Features

Generative models
• Cepstral GMM-UBM
• Language models

Discriminative models
• Support vector machines
• Sequence kernels
• Feature normalization
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UBM-based Likelihood Ratios 
Estimate

P(D | target) : target speaker model

P(D | impostor) : universal background model 
(UBM), trained on large population

Normalize log-LR by utterance length to ensure 
comparability in thresholding

Log prior odds add a constant offset to threshold
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UBM-LR Examples
Low-level:
• Features = short-term cepstra
• Likelihoods estimated by GMMs
• State-of-the-art until recently [Reynolds et al. 2000]

High-level:
• Features = phone or word N-grams
• Likelihoods estimated by N-gram LMs

For robustness and normalization of LRs:
• Target models derived from UBM by MAP-

adaptation
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Discriminative Modeling - SVMs
Each speech sample generates a point in a derived feature space

The SVM is trained to separate the target sample from the impostor 
(= UBM) samples

Scores are computed as the Euclidean distance from the decision 
hyperplane to the test sample point

SVMs training is biased against misclassifying positive examples 
(typically very few, often just 1)

Background sample

Target sample

Test sample



Feature Transforms for SVMs

SVMs have been a boon for SR research –
allow great flexibility in the choice of features

However, require a “sequence kernel”

Dominant approach:  transform variable-
length feature stream into fixed, finite-
dimensional feature space

Then use linear kernel

All the action is in the feature transform!
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Cepstral Feature Transforms
Polynomial expansion [Campbell 2002] 
• Expand each frame of features into polynomial vector:

• Mean and variance of expanded vectors is estimated over whole 
speech sample

• Captures lower-order moments of feature distribution in a single 
vector

GMM supervectors [Campbell et al. 2006]
• MAP-adapt UBM-GMM to target speaker data
• Stack all gaussian means into one “supervector”
• Optional:  Scale by variances
• Use supervector as SVM feature vector
• Can be interpreted as KL distance between GMMs



Feature Transforms via MLLR
[Stolcke et al. 2005]
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Speaker-independent

Speaker-independent

Phone class A

Phone class B

Speaker-dependent

Speaker-dependent

MLLR transforms = New features



Cepstral Model Comparison
EER on NIST SRE’06 

Note: MLLR transform can leverage detailed 
ASR speech models and feature 
normalizations
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1 train sample 8 train samples
GMM LLR 6.15 4.58
GMM-SV SVM 5.56 4.78
MLLR SVM 4.31 2.84



Prosodic Modeling
Syllable-based prosodic features
[Shriberg et al. ‘05, Ferrer et al. ‘07]

• Train global GMM that models observation 
vectors: pitch, energy, durations

• Adapt mixture weights to speaker data
• Use adapted weight vector as feature 

(a kind of Fisher kernel)

Pitch and energy contours [Dehak et al. ‘07]
• Fit Legendre polynomials
• Use coefficients as feature vector
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Token-Based Speaker Modeling
Goal: model a phone [Andrews et al. ‘02] or word  
[Doddington ‘01] token stream
• Captures pronunciation and idiolectal differences
• Also, applicable to some prosodic features

Compute N-gram frequencies from each 
sample, normalized by utterance length

Frequencies of top-N n-gram types form 
(sparse) feature vector, suitable for SVM

Requires proper scaling of feature dimensions 
(next slide)
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Feature Scaling for SVMs
SVMs are sensitive to scale of features

Absent prior knowledge or explicit optimization 
[Hatch et al. ’05], need to equate dynamic range of 
dimensions

Proposed methods:
• Variance normalization
• TFLLR: kernel emulates LLR between N-gram models 

[Campbell NIPS’03]
• TFLOG:  similar to TF-IDF [Campbell ‘04]
• Rank normalization

– Maps feature space to uniform distribution
– Distance between samples ≈ % population between them
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Feature Scaling Comparison
Comparison of feature scaling methods on a variety 
of features, modeled by SVMs [Stolcke et al. 2008]

NIST SRE’06 EER 

Note: TFLLR/TFLOG were proposed specifically for 
phone/word N-grams, respectively

Rank norm seems to perform reasonably regardless 
of feature
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Feature None Variance TFLLR TFLOG Rank norm
MLLR 5.29 3.94 3.61
Prosody 14.19 14.08 13.65
Phone N-ngrams 12.30 10.84 10.73 10.30
Word N-grams 22.98 31.07 21.63 23.19



Intra-Speaker Variability (1)
Variability of the same speaker between 
recordings may overwhelm between-speaker 
differences

Speaker recognition is the converse of Speech 
recognition

Two old approaches:
• Feature normalization [Reynolds et al. ‘03]
• Score normalization: mean/variance normalization 

according to scores from
– Other speaker models on same test data 
– Same speaker model on different test data
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Intra-Speaker Variability in SVMs
Nuisance Attribute Projection (NAP)
[Solomonoff et al. ‘04]
• Remove directions of the feature space that are 

dominated by intra-speaker variability
• Estimate within-speaker feature covariance from a 

database of speaker with multiple recordings
• Project into the complement of the subspace U

spanned by the top-K eigenvectors:

• Model with SVM’s as usual

( )yUUIy T−=′
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Factor Analysis with GMMs (1)
[Kenny et al. ‘05, Vogt et al. ’05]

An utterance h is best modelled by a GMM with 
mean supervector μh(s), based on speaker and 
session factors

• The true speaker mean µ(s) is assumed to be 
independent of session differences.

• Session factors exhibit an additional mean offset zh(s)
in a restricted, low-dimensional subspace
represented by the transform U

• U is same as for NAP

)()()( sss hh Uzμμ +=
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Factor Analysis with GMMs (2)
Assuming µ(s) is MAP adapted from the UBM 
mean m,

• y(s) is the speaker offset from the UBM

During target model training, µ(s) and all zh(s)
are optimised simultaneously
• µ(s) using Reynolds’ MAP criterion
• zh(s) using a MAP criterion with standard normal 

prior in the session subspace
• Only the true speaker mean µ(s) is retained

)()( ss ymμ +=
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Intra-Speaker Variability:
Same Speaker
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Intra-Speaker Variability:
Different Speakers
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Cepstral Models with Intra-Speaker 
Variability Modeling

EER on NIST SRE’06, 1-sample training

MLLR benefits the least because it already 
conditions-out variability due to phonetic 
content 
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Without ISV With ISV
GMM LLR 6.15 4.75
GMM-SV SVM 5.56 4.21
MLLR SVM 4.31 3.61
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Other Recent Developments (1)
Joint factor analysis [Kenny et al. ‘06]
• Constrain speaker means to vary in a low-

dimensional subspace:

• V is subpace spanned by “eigenspeakers”
• y(s) is the speaker residual and could be dropped 

if eigenspeaker space is good enough
• Current the best-performing approach

x(s) can be used as a (much lower-
dimensional) feature vector

)()()( sss yVxmμ ++=
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Other Recent Developments (2)
Modeling of SVM weight correlation (prior) for 
SVM [Ferrer et al. ’07]
• Estimate weight covariance on well-trained 

speaker models
• Prior folded into kernel function

Decorrelating SVM classifier training for 
better system combination [Ferrer et al. ’08a]
• Train classifier A (any type)
• Train SVM classifier B, penalized for score 

correlation with classifier A
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Other Recent Developments (3)

Constrained cepstral GMMs
[Bocklet & Shriberg, 2009]
• Ensemble of cepstral GMMs conditioned on 

syllable regions
• Regions constrained by lexical and linguistics 

context (from ASR)
• Syllables may be selected by multiple constraints, 

or not at all
• Subsystems combined at score level (next slide)
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System Combination
Widely used for combining systems that differ 
either in features or modeling approach

Methods used:
• Neural net
• SVM
• Linear logistic regression

– Works about as well as any anything else

Conditioning combiner on auxiliary variables
[Ferrer et al. ’08b]
• On metadata: language, channel
• Automatically extracted acoustic features (SNR)
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Data Properties

Typical NIST SRE task
• Dimension of expanded feature space: 10k-100k
• Positive sample size:  1, 3, or 8
• Negative (impostor) sample size: 2-5k
• 20k to 100k model-test sample pairings (“trials”)
• Sample duration: 5 minutes (2.5 min. of speech)
• Challenging but doable with freely available SVM 

software [libSVM, SVMlight]
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Research Issues
Features
• Preservation of sequence information in feature 

extraction

Modeling
• Coping with data mismatch

– ISV model training on mismatched channel / style 
• Unsupervised training
• Better feature/model combination
• Discriminative training (in generative framework)
• Graphical models?
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Summary
Dominant features:  cepstral

Dominant models:  GMMs and SVM

SVMs have opened door to many novel 
feature types – easy once feature transform 
into fixed-dim. linear space is defined

Focus on modeling within-class (with-
speaker) variability (NAP, JFA)

Speaker recognition is a rich application field 
for ML research – We need you!
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Questions
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