SRI 2001 SPINE Evaluation System

Venkata Ramana Rao Gadde Andreas Stolcke Dimitra Vergyri Jing Zheng Kemal Sonmez Anand Venkataraman

Talk Overview

- System Description
 - Components
 - Segmentation
 - Features
 - Acoustic models
 - Acoustic Adaptation
 - Language models
 - Word posteriors
 - System Combination
 - Processing Steps

- Results
 - Dryrun, Evaluation
 - What worked
 - What didn't
 - Fourier cepstrum revisited
- Evaluation Issues
- Future Work
- Conclusions

System Description

Segmentation

- Segmentation is done in multiple steps
 - Classify and segment waveform into foreground/background using a 2-class HMM
 - Recognize foreground segments
 - Compute word posterior probabilities (from confusion networks derived from N-best lists)
 - Resegment the foreground segments eliminating word hypotheses with posteriors below a threshold (optimized on dryrun data)

Acoustic Features

- 3 feature streams with separate acoustic models:
 - Mel cepstrum
 - PLP cepstrum (implementation from ICSI)
 - Fourier cepstrum
- Each feature stream has 39 dimensions consisting of 13 cepstra, 13 deltas and 13 delta-deltas
- Features were normalized for each speaker
 - Cepstral mean and variance normalization
 - Vocal tract length normalization
 - By transforms estimated using constrained MLLR

Acoustic Models

- 6 different acoustic models:
 - 3 frontends
 - crossword + non-crossword
- All models gender-independent
- SPINE1 training + eval + SPINE2 training data
- Bottom-up clustered triphone states ("genones")
- Non-crossword models contained about 1000 genones with 32 gaussians/genones
- Crossword models contained about 1400 genones with 32 gaussians/genones

Discriminative Acoustic Training

- All models were first trained using the standard maximum likelihood (ML) training
- Subsequently, one additional iteration of discriminative training, using maximum mutual information estimation (MMIE)

Acoustic Adaptation

- Adaptation was applied in two different ways
 - Feature normalization using constrained MLLR
 - Feature normalization transforms were computed using a reference model, trained from VTL and cepstral mean and variance normalized data.
 - A global model transform was computed using the constrained MLLR algorithm and its inverse was used as the feature transform.
 - Equivalent to speaker-adaptive training (Jin et al, 1998).

Acoustic Adaptation (continued)

- Model adaptation using modified MLLR
 - Acoustic models were adapted using a variant of MLLR which does variance scaling in addition to mean transformation.
 - 7 phone classes were used to compute the transforms.

Language Models

- 3 language models (4 evaluation systems):
 - SRI LM1: trained on SPINE1 training + eval data, SPINE2 training + dry run data (SRI1, SRI2)
 - SRI LM2: trained on SPINE1 training + eval data, SPINE2 training data (SRI3)
 - CMU LM: modified to include multiword n-grams (SRI4)
- Trigrams used in decoding, 4-grams in rescoring.
- Note: SRI4 had bug in LM conversion.
 - Official result: 42.1% Corrected result: 36.5%.

Class-based Language Model

- Goal: Overcome mismatch between 2000 and 2001 task vocabulary (new grid vocabulary)
- Approach (similar to CU and IBM):
 - Map 2000 and 2001 grid vocabulary to word classes
 - 2 classes: grid words and spelled grid words
 - Expand word classes with uniform probabilities for 2001 grid vocabulary
- Eval system used only single word class for nonspelled grid words (unlike IBM, CU).
- X/Y labeling of grid words gives additional 0.5% win over SRI2 (27.2% final WER).

Automatic Grid Word Tagging

- Problem: grid words are ambiguous
 - We are at bad and need, bad and need, versus
 - That's why we missed so bad
- Solution:
 - Build HMM tagger for grid words
 - Ambiguous grid words are generated by two states: GRIDLABEL or self.
 - State transitions given by trigram LM.
 - HMM parameters estimated from unambiguous words.

Other LM Issues

- Interpolating SPINE1 + SPINE2 models with optimized weighting is better than pooling data.
- Automatic grid word tagging is better than blindly replacing grid words with classes ("naïve" classes)
- Dry run performance, first decoding pass:

Model/Data	Туре	Perplexity	WER
CMU trigram	Word	58.6	36.9
SRI trigram	Word	56.9	-
SPINE1+SPINE2	Word,		-
	interpolated	50.9	
SPINE1+SPINE2	Class, naïve	43.7	31.7
SPINE1+SPINE2	Class, HMM-		
	tagged	39.7	31.2

Word Posterior-based Decoding

- Word posterior computation:
 - N-best hypotheses obtained for each acoustic model
 - Hypothesis rescored with new knowledge sources: pronunciation probabilites and class 4-gram LM
 - Hypotheses aligned into word confusion "sausages".
 - Score weights and posterior scaling factors jointly optimized for each system, for minimum WER
- Decoding from sausages:
 - Pick highest posterior word at each position
 - Reject words with posteriors below threshold (likely incorrect word, noise or background speech)

Word Posterior-based Adaptation and System Combination

- System combination:
 - Two or more systems combined by aligning multiple N-best lists into a single sausage (N-best ROVER)
 - Word posteriors are weighted averages over all systems
 - Final combination weights all three systems equally
- Adaptation:
 - 2 out of 3 system were combined round-robin to generate improved hypotheses for model readaptation of the third system

- Maintains system diversity for next combination step

- 1. Segment waveforms.
- 2. Compute VTL and cepstral mean and variance normalizations.
- 3. Recognize using GI non-CW acoustic models and 3-gram multiword language models.

Following steps are done for all 3 features

- 4. Compute feature transformations for all speakers.
- 5. Recognize using transformed features.

- 6. Adapt the CW and non-CW acoustic models for each speaker.
- 7. Use the non-CW acoustic models and 2-gram language models to generate lattices. Expand the lattices using 3-gram language models.
- 8. Dump N-best hypotheses from the lattices using CW speaker-adapted acoustic models.
- 9. Rescore the N-best using multiple KSs and combine them using ROVER to produce 1-best.

- 10. Readapt the acoustic models using hypotheses from Step 9. For each feature model, use the hypotheses from the other two feature models.
- 11. Dump N-best from lattices using the acoustic models from Step 10.
- 12. Combine the N-best using N-best ROVER.

Following steps are for SRI1 only

- Adapt acoustic models trained on all data, including dry run data using the hypotheses from Step 12.
- 14. Dump N-best hypotheses.
- 15. Combine all systems to generate final hypotheses. Do forced alignment to generate CTM file.

Results

SPINE 2001 Dry Run Results

Step		WER
Step 3. Recognition with Mel features and non-CW GI models with 3-gram lm		31.6
Step 5. Recognition with transformed features and non-CW GI models with 3-gram lm	Fourier	28.8
	Mel	27.1
	PLP	26.9
Step 7. Generate lattices using speaker adapted non-CW models	Fourier	24.9
	Mel	24.5
	PLP	24.3
Step 8. Dump N-best from lattices using CW models	Fourier	22.7
	Mel	23.5
	PLP	23.2
Step 9. System Combination 1		19.5
Step 12. System Combination 2		19.3

SPINE2001 Evaluation Results

Step		WER			
		SRI1/SRI2 (SRI lm1)	SRI3 (SRI lm2)	SRI4 (CMUlm,bug fixed)	
Step 3. Recognition with Mel features and GI models with 3-gram lm		39.0	38.6	42.8	
Step 5. Recognition with transformed features and GI models with 3-gram lm	Fourier	36.1	36.4	40.6	
	Mel	34.9	35.4	38.9	
	PLP	34.3	34.5	37.9	
Step 8. Dump N-best from lattices using CW models	Fourier	31.7	31.9	34.3	
	Mel	32.1	32.5	34.9	
	PLP	31.1	31.5	33.3	
Step 9. System Combination 1		28.0	28.1	30.0	
Step 12. System Combination 2		27.7 (SRI2)	28.0		
Step 15. System Combination 3		27.6 (SRI1)			

What Worked?

- Improved segmentation:
 - New segments were less than 1% absolute worse in recognition than true (reference) segments.
 - Last year, we lost 5.4% in segmentation.

Test Set		WER for differe	nt segmentations	
	TDUE	Energy based (Eval2000)	Foreground/ background recognizer	FG/BG recognition +reject word
	IKUE			removai
Eval 2000	31.5	36.9	34.2	32.6
Dry Run 2001	31.3	37.5	33.6	31.6
Eval 2001	38.2	-	39.5	39

What Worked? (continued)

- Feature SAT
 - Typical win was 4% absolute or more.
- 3-way system combination.
 - WER reduced by 3% absolute or more.
- Class-based language model
 - Improvement of 2%, 4-5% in early decoding stages.
- Acoustic model parameter optimization
 - Win of 2% absolute or more.

What Worked? (continued)

- MMIE training
 - MMIE trained acoustic models were about 1% abs.
 better than ML trained models.
- Word rejection with posterior threshold
 - 0.5% win in segmentation
 - 0.1% win in final system combination
- Acoustic readaptation after system combination
 - 0.4% absolute win.
- SPINE2001 system was about 15% absolute better than our SPINE2000 system.

SPINE1 Performance

- SPINE1 evaluation result: 46.1%
- SPINE1 workshop result: 33.7%
 - Energy-based segmentation
 - Cross-word acoustic models
- Current system on SPINE1 eval set: 18.5%
 - Using only SPINE1 training data

What Did Not Work

- Spectral subtraction
- Duration modeling
 - Marginal improvement, unlike our Hub5 results
 - Too little training data?
- Dialog modeling
 - Small win observed in initial experiments but no improvement in dry run.

Fourier Cepstrum Revisited

- Fourier cepstrum = IDFT(Log(Spectral Energy))
- Past research (Davis & Mermelstein 1980) showed that Fourier cepstrum is inferior to MFC.
- None of current ASR systems use Fourier cepstra.
- Our experiments support this, but we also found that adaptation can improve the performance significantly.

Fourier cepstral features (continued)

Step	Dry Run 2001 WER		Eval 2001 WER	
	Fourier	Mel	Fourier	Mel
Step 3. Recognition with non- CW GI models and 3-gram lm	36.6	31.3	42.0	38.6
Step 5. Recognition with transformed features and non- CW SAT GI models with 3- gram lm	28.8	27.1	36.4	35.4
Step 7. Generate lattices using speaker adapted non-CW	20.0	27.1	30.4	
models Step 8. Dump N-best from	24.9	24.5	33.5	33.4
lattices using CW models	22.7	23.5	31.9	32.5

Fourier cepstral features (continued)

- Why does feature adaptation produce significant performance improvement?
 - Does DCT decorrelate features better than DFT?
 - What is the role of frequency warping in MFC?
- Can we reject any new feature based on a single recognition experiment?

Evaluation Issues

- System development was complicated by lack of proper development set (that is not part of the training set).
- Suggestion: use previous year's eval set for development (assuming task stays the same).
- Make standard segmenter available to sites who want to focus on recognition.

Future Work

- Noise modeling
- Optimize front-ends and system combination for noise conditions
- New features
- Language model is very important, but taskspecific: how to "discover" structure in the data?
- Model interaction between conversants

Conclusions

- 15% abs. improvement since SPINE1 Workshop.
- Biggest winners:
 - Segmentation
 - Acoustic adaptation
 - System combination
 - Class-based language modeling
- Contrary to popular belief, Fourier cepstrum performs as well as MFCC or PLP.
- New features need to be tested in a full system!

