

Combining Heterogeneous Sensors with Standard Microphones for Noise Robust Recognition

Horacio Franco¹, Martin Graciarena¹² Kemal Sonmez¹, Harry Bratt¹

> ¹ SRI International ² University of Buenos Aires

General Problem & Approach

Problem

 Current speech recognition systems are brittle with regard to changes in the acoustic environment. Need to increase robustness!

Approach

 Enrich standard microphone signal stream with multiple additional speech signals from *alternative sensors*.

Rationale

 Alternative sensors may be more isolated from environmental noise ⇒ convey complementary robust information about signal components degraded with a standard microphone

Alternative Sensors

- Throat, ear, skull microphones: Alternative, more robust paths for some signal components.
- Electroglottography (EGG): A technique used to register laryngeal behavior indirectly by a measuring the change in electrical impedance across the throat during speaking.
- Glottal Electro Magnetic Sensors (GEMS): Low power radar-like sensor, can measure conditions of articulators, in particular voice excitation. (Lawrence Livermore Labs)
- Nasal accelerometers: Measure of nasal airflow.

Problems

- How to fuse both microphones' data to improve noisy recognition
- How to train acoustic models; (with very little "stereo" data available)

Proposed Approach

- Extend the Probabilistic Optimum Filtering (POF) technique to map noisy standard and throat microphones features, juxtaposed as an extended vector ⇒ <u>estimate clean std</u> <u>microphone feature</u> (mel-cepstra features).
 - First problem: estimated std microphone features computed in MMSE sense to real clean std microphone features
 - Second problem: need for small to medium "stereo" database.
 Estimated std microphone features can be recognized with SRI's DECIPHER system

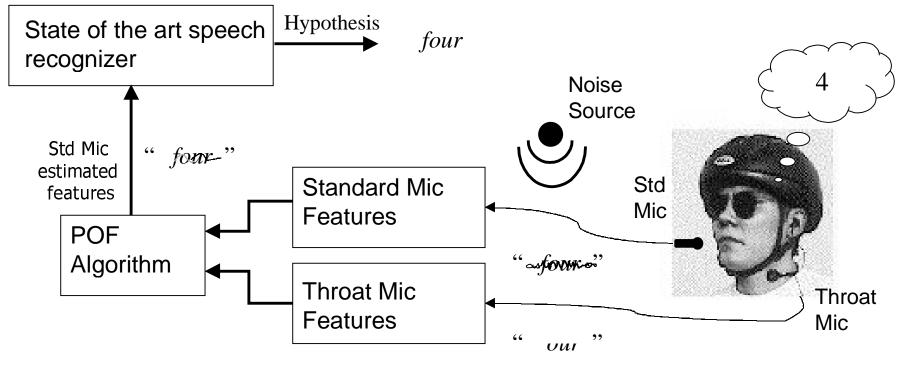
POF Introduction

- POF mapping is a <u>piece-wise linear transformation</u> from noisy feature space to clean feature space.
- Each linear transformation assigned to region in a VQ partition of noisy feature space.
- Estimated clean feature vector:

 Compute Posterior probabilities of VQ regions using a <u>conditioning vector</u> (derived from noisy feature vector)

 Compute set of linear transformations weighted by the posterior probabilities from noisy speech feature vector (one or more time adjacent frames (window parameter)).

Standard and Throat Microphone Feature Combination



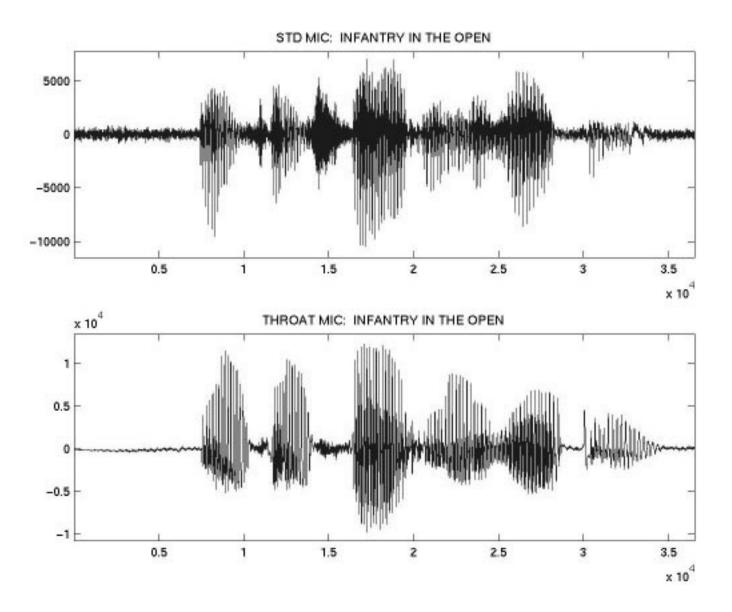
* *Combined microphones provide clearer picture!* * Noise affects mostly * Std microphone signal in

* Throat microphone signal almost immune to noise but has partial information

Throat Microphone

- Its a skin vibration transducer \Rightarrow Highly immune to environmental noise due to close contact with throat skin.
- What type of Info it gives?
 - Robust voicing information
 - Some spectral information
- Production model for throat microphone signal ⇒ Multipath signal?
- Robustness analysis: environmental noise energy captured by throat microphone is ~10 times lower than std microphone noise energy!

Std and Throat Microphone Signals



Std and Throat Microphone Signals



STD MIC: INFANTRY IN THE OPEN

EXPERIMENT 1: *Artificially Added Noise*:

- M1 Tank noise artificially added <u>only to std microphone</u> in POF training database.
- Trained POF mappings from noisy features (std and std+throat) to std clean in "stereo" database
- Recognized noisy testing database. SNR's: Clean, 10dB, 6dB and 0dB. Mapped noisy to clean features with POF.
- *G3 company* corpus. Databases: POF training, 975 sent. & 30 speakers, Testing, 70 sent. & 7 indep. Speakers.
- Acoustic models: H4'98, adapted on the POF training database.
 LM: weighted combination of bigram LM's trained on H4 and Brown corpus. 5k vocabulary (no OOV)

RESULTS EXPT 1: Artificially Added Noise:

Results: WER % (distortion)

•	# Window, # VQ Regions	Clean	10dB SNR	6dB SNR	0dB SNR
No Compensation Standard Mic.		18.2%	51.3% (.831)	73.9% (.892)	95.6% (.975)
POF Compensation Standard Mic.	5,100		46.0% (.616)	57.7% (.681)	88.5% (.777)
POF <u>Combined Mic.</u> Mapping (Throat C0 only)	5,100		37.9% (.616)	49.1% (.677)	76.1% (.765)
POF <u>Combined Mic.</u> Mapping (Throat Full vector) 3,100		35.7% (.590)	46.7% (.643)	66.4% (.715)
POF <u>Combined Mic.</u> Mapping+VQ (Throat Full vector)	3,100		29.3% (.577)	37.9% (.625)	53.8% (.687)
MLLR Adaptation Unsupervised on POF train da with FB align and clean rec. tr			47.1 %	58.7 %	80.5 %

with FB align and clean rec. transcripts

EXPERIMENT 2: *Recorded Noisy Speech*:

- Recognition of recorded M1 Tank noisy speech
- Approach: SNR varies across sentences! Have to use SNR dependent mapping
- Estimate SNR \Rightarrow Apply mapping for that SNR
- Selected SNR's: >25dB (Clean), 8-12dB, 4-8dB.
- Used trained POF mappings from Expt. 1
- Database, SNR conditions: >25dB 91 sent, 8-12dB 116 sent, 4-8dB 75 sent.
- Same acoustic models as Expt. 1, same LM but had to interpolate uniform unigrams from test database. 5k Voc. (no OOVs)
- Database problems : click artifacts and misalignments!!

RESULTS EXPT 2: Recorded Noisy Speech

Results: WER %

Compensation Method	# Window, # VQ Regions	>25dB SNR	8-12dB SNR	4-8dB SNR
No Compensation Standard Mic.		19.6%	55.0%	62.4%
POF <u>Combined Mic.</u> Mapping+VQ (Throat Full vector)	3,100		41.2%	44.8%

Conclusions

- Proposed technique to combine noisy std and throat microphone features to estimate std microphone clean features.
- Experiments show robust complementary information is provided by the throat microphone.

Applications

- Robust recognition with throat microphone in cars, military vehicles, etc.
- Robust endpointing for highly noisy environments

Future Work

- Data collection
 - small pilot
 - single-speaker
 - easier/cheaper to collect
 - provide enough training for speaker-dependent models
 - expect results will generalize to speaker-independent systems
 - expect to collect 2 to 3 hours of WSJ utterances
 - first use WSJ "lsd_trn" speaker (includes at least 3 hours of speech) to train systems to determine how much data is sufficient
 - collect training data in high SNR conditions, a few test sets in different levels of noise

Future Work

- Signal Processing/Frontends
 - Combination of inputs in spectral domain
 - Reconstruction of a more robust spectral representation from components
 - Signal-adaptive front-ends for heterogeneous inputs
 - Each signal has unique time/frequency characteristics
- Testing/Analysis
 - determine WERs for each kind of microphone alone
 - determine WER reduction with different combinations of microphones
 - determine usefulness of combining features extracted from other devices with each microphone's feature vector