Prosody-Based Detection of Annoyance and Frustration in Communicator Dialogs

Liz Shriberg\* Andreas Stolcke\* Jeremy Ang+

\* SRI International International Computer Science Institute + UC Berkeley

# Introduction

- Prosody = rhythm, melody, "tone" of speech
- Largely unused in current ASU systems
- Prior work: prosody aids many tasks:
  - Automatic punctuation
  - Topic segmentation
  - Word recognition
- Today's talk: detection of user frustration in DARPA Communicator data (ROAR project suggested by Jim Bass)

# Talk Outline

- Data and labeling
- Prosodic and other features
- Classifier models
- Results
- Conclusions and future directions

# Key Questions

- How frequent is annoyance and frustration in Communicator dialogs?
- How reliably can humans label it?
- How well can machines detect it?
- What prosodic or other features are useful?

# **Data Sources**

- Labeled Communicator data from various sites
  - NIST June 2000 collection: 392 dialogs, 7515 utts
  - CMU 1/2001-8/2001 data: 205 dialogs, 5619 utts
  - CU 11/1999-6/2001 data: 240 dialogs, 8765 utts
- Each site used different formats and conventions, so tried to minimize the number of sources, maximize the amount of data.
- Thanks to NIST, CMU, Colorado, Lucent, UW

# **Data Annotation**

- 5 undergrads with different backgrounds (emotion should be judged by 'average Joe').
- Labeling jointly funded by SRI and ICSI.
- Each dialog labeled by 2+ people independently in 1st pass (July-Sept 2001), after calibration.
- Ind "Consensus" pass for all disagreements, by two of the same labelers (Oct-Nov 2001).
- Used customized Rochester Dialog Annotation Tool (DAT), produces SGML output.

# **Data Labeling**

- Emotion: neutral, annoyed, frustrated, tired/disappointed, amused/surprised, no-speech/NA
- Speaking style: hyperarticulation, perceived pausing between words or syllables, raised voice
- Repeats and corrections: repeat/rephrase, repeat/rephrase with correction, correction only
- Miscellaneous useful events: self-talk, noise, non-native speaker, speaker switches, etc.

# **Emotion Samples**

| Neutral• July 30• Yes• Yes      | <ul> <li>Annoyed</li> <li>Yes</li> <li>Late morning (HYP)</li> </ul> | <b>€</b> €3<br>€€8      |
|---------------------------------|----------------------------------------------------------------------|-------------------------|
| Disappointed/tired<br>• No €€ 6 | <ul> <li>Frustrated</li> <li>Yes</li> <li>No</li> </ul>              | <b>€</b><br>€<br>€<br>5 |
| Amused/surprised • No € 7       | <ul> <li>No, I am (HYP)</li> <li>There is no Manila</li> </ul>       | <b>€</b> €9<br>€€10     |

# **Emotion Class Distribution**

|            | Count | %    |
|------------|-------|------|
| Neutral    | 17994 | .831 |
| Annoyed    | 1794  | .083 |
| No-speech  | 1437  | .066 |
| Frustrated | 176   | .008 |
| Amused     | 127   | .006 |
| Tired      | 125   | .006 |
| TOTAL      | 21653 |      |

To get enough data, we grouped annoyed and frustrated, versus else (with speech)

# **Prosodic Model**

- Used CART-style decision trees as classifiers
- Downsampled to equal class priors (due to low rate of frustration, and to normalize across sites)
- Automatically extracted prosodic features based on recognizer word alignments
- Used automatic feature-subset selection to avoid problem of greedy tree algorithm
- Used 3/4 for train, 1/4th for test, no call overlap

## **Prosodic Features**

#### Duration and speaking rate features

- duration of phones, vowels, syllables
- normalized by phone/vowel means in training data
- normalized by speaker (all utterances, first 5 only)
- speaking rate (vowels/time)

#### Pause features

- duration and count of utterance-internal pauses at various threshold durations
- ratio of speech frames to total utt-internal frames

### Prosodic Features (cont.)

#### Pitch features

- F0-fitting approach developed at SRI (Sönmez)
- LTM model of F0 estimates speaker's F0 range



- Many features to capture pitch range, contour shape & size, slopes, locations of interest
- Normalized using LTM parameters by speaker, using all utts in a call, or only first 5 utts

# Features (cont.)

#### Spectral tilt features

- average of 1st cepstral coefficient
- average slope of linear fit to magnitude spectrum
- difference in log energies btw high and low bands
- extracted from longest normalized vowel region

#### Other (nonprosodic) features

- position of utterance in dialog
- whether utterance is a repeat or correction
- to check correlations: hand-coded style features including hyperarticulation

# Language Model Features

- Train 3-gram LM on data from each class
- LM used word classes (AIRLINE, CITY, etc.) from SRI Communicator recognizer
- Given a test utterance, chose class that has highest LM likelihood (assumes equal priors)
- In prosodic decision tree, use sign of the likelihood difference as input feature
- Finer-grained LM scores cause overtraining

### **Results: Human and Machine**

|          |                                             | Accuracy (%)<br>(chance = 50%) | Kappa<br>(Acc-C)/(1-C) |
|----------|---------------------------------------------|--------------------------------|------------------------|
|          | Each Human with<br>Other Human, overall     | 71.7                           | .38                    |
|          | Human with Human<br>"Consensus" (biased)    | 84.2                           | .68                    |
| Baseline | Prosodic Decision<br>Tree with Consensus    | 75.6                           | .51                    |
|          | Tree with Consensus, no repeat/correction   | 72.9                           | .46                    |
|          | Tree with Consensus, repeat/correction only | 68.7                           | .37                    |
|          | Language Model<br>features only             | 63.8                           | .28                    |

## Results (cont.)

□ H-H labels agree 72%, complex decision task

- inherent continuum
- speaker differences
- relative vs. absolute judgements?
- □ H labels agree 84% with "consensus" (biased)
- Tree model agrees 76% with consensus-- better than original labelers with each other
- Prosodic model makes use of a dialog state feature, but without it it's still better than H-H
- Language model features alone are not good predictors (dialog feature alone is better)

### **Baseline Prosodic Tree**

#### duration feature pitch feature other feature

```
REPCO in ec2,rr1,rr2,rex2,inc,ec1,rex1 : 0.7699 0.2301 AF
   MAXFO IN MAXV N < 126.93: 0.4735 0.5265 N
   MAXFO IN MAXV N >= 126.93: 0.8296 0.1704 AF
       MAXPHDUR N < 1.6935: 0.6466 0.3534 AF
           UTTPOS < 5.5: 0.1724 0.8276 N
           UTTPOS >= 5.5: 0.7008 0.2992 AF
       MAXPHDUR N >= 1.6935: 0.8852 0.1148 AF
REPCO in 0 : 0.3966 0.6034 N
   UTTPOS < 7.5: 0.1704 0.8296 N
   UTTPOS >= 7.5: 0.4658 \ 0.5342 \ N
       VOWELDUR_DNORM_E_5 < 1.2396: 0.3771 0.6229 N
           MINFOTIME < 0.875: 0.2372 0.7628 N
           MINFOTIME >= 0.875: 0.5 0.5 AF
               SYLRATE < 4.7215: 0.562 0.438 AF
                   MAXFO TOPLN < -0.2177: 0.3942 0.6058 N
                   MAXFO TOPLN >= -0.2177: 0.6637 0.3363 AF
               SYLRATE >= 4.7215: 0.2816 0.7184 N
       VOWELDUR DNORM E 5 >= 1.2396: 0.5983 0.4017 AF
           MAXPHDUR N < 1.5395: 0.3841 0.6159 N
               MINFOTIME < 0.435: 0.1 0.9 N
               MINFOTIME >= 0.435: 0.4545 0.5455 N
                   RISERATIO DNORM E 5 < 0.69872: 0.3284 0.6716 N
                  RISERATIO DNORM E 5 >= 0.69872: 0.6111 0.3889 AF
           MAXPHDUR N >= 1.5395: 0.6728 0.3272 AF
```

### Predictors of Annoyed/Frustrated

- Prosodic: Pitch features:
  - high maximum fitted F0 in longest normalized vowel
  - high speaker-norm. (1st 5 utts) ratio of F0 rises/falls
  - maximum F0 close to speaker's estimated F0 "topline"
  - minimum fitted F0 late in utterance (no "?" intonation)

Prosodic: Duration and speaking rate features

- long maximum phone-normalized phone duration
- long max phone- & speaker- norm.(1st 5 utts) vowel
- low syllable-rate (slower speech)
- **Other:** 
  - utterance is repeat, rephrase, explicit correction
  - utterance is after 5-7th in dialog

## Effect of Class Definition

|                                                                 | Accuracy (%)<br>(chance = 50%) | Entropy<br>Reduction |
|-----------------------------------------------------------------|--------------------------------|----------------------|
| Baseline prosody model<br>Consensus labels<br>A,F vs. N,else    | 75.6                           | 21.6                 |
| Tokens on which labelers<br>originally agreed<br>A,F vs. N,else | 78.3                           | 26.4                 |
| All tokens<br>Consensus labels<br>F vs. A,N,else                | 82.7                           | 37.0                 |

For less ambiguous tokens, or more extreme tokens

performance is significantly better than our baseline

## Error tradeoffs (ROC)



# Conclusion

- Emotion labeling is a complex decision task
- Cases that labelers independently agree on are classified with high accuracy
- Extreme emotion (e.g. 'frustration') is classified even more accurately
- Classifiers rely heavily on prosodic features, particularly duration and stylized pitch
- Speaker normalizations help, can be online

# Conclusions (cont.)

- Two nonprosodic features are important: utterance position and repeat/correction
- Even if repeat/correction not used, prosody still good predictor (better than human-human)
- Language model is an imperfect surrogate feature for the underlying important feature repeat/correction
- Look for other useful dialog features!

# **Future Directions**

Use realistic <u>data</u> to get more real frustration

□ Improve <u>features</u>:

- use new F0 fitting, capture voice quality
- base on ASR output (1-best straightforward)
- optimize online normalizations
- Extend <u>modeling</u>:
  - model frustration *sequences*, include dialog state
  - exploit speaker 'habits'
- Produce prosodically 'tagged' data, using combinations of current feature primitives
- Extend <u>task</u> to other useful emotions & domains.

### Thank You