Harnessing Speech Prosody for Human-Computer Interaction

Elizabeth Shriberg Andreas Stolcke

Speech Technology and Research Laboratory SRI International, Menlo Park, CA International Computer Science Institute Berkeley, CA

Collaborators

- Lee Stone (NASA); Beth Ann Hockey, John Dowding, Jim Hieronymous (RIACS)
- Luciana Ferrer (SRI postdoc)
- Harry Bratt, Kemal Sonmez (SRI)
- Jeremy Ang (ICSI/UC Berkeley)
- Emotion labelers: Raj Dhillon, Ashley Krupski, Kai Filion, Mercedes Carter, Kattya Baltodano

Introduction

- **Prosody** = melody, rhythm, "tone" of speech
- Not what words are said, but how they are said
- Human languages use prosody to convey:
 - phrasing and structure (e.g. sentence boundaries)
 - disfluencies (e.g. false starts, repairs, fillers)
 - sentence mode (statement vs question)
 - emotional attitudes (urgency, surprise, anger)
- Currently largely unused in speech systems

Talk Outline

- Project goal and impact for NASA
- Sample research tasks:
 - Task 1: Endpointing
 - Task 2: Emotion classification
- General method
 - language model, prosodic model, combination
 - data and annotations
- Results
 - Endpointing: error trade-offs & user waiting time
 - Emotion: error trade-offs & class definition effects
- Conclusions and future directions

Project Goal

Most dialog systems don't use prosody in input; they view speech simply as "noisy" text.

Our goal: add prosodic information to system input.

Today: Two Sample Tasks

Task 1: Endpointing (detecting end of input)

- current ASR systems rely on pause duration
 measure temperature at ... cargo bay...
- causes premature cut-off during hesitations
- wastes time waiting after actual boundaries
- Task 2: Emotion detection
 - word transcripts don't indicate user state
 measure the -- STOP!! GO BACK!!
 - alert computer to immediately change course
 - alert other humans to danger, fatigue, etc.

Other Tasks in Project

Automatic sentence punctuation:
 Don't go to flight deck!
 Don't! Go to flight deck! (DO go to flight deck)

- Detection of utterance mode:
 Computer: Confirm opening of hatch number 2
 Human: Number 2./? (confirmation or question?)
- Detection of disfluencies:
 Item three one five one two (item 31512 or 512?)

Method: Prosodic Modeling

- Pitch is extracted from acoustic signal
- Speech recognizer identifies phones, words, and their durations
- Pitch and duration information is combined to compute distinctive *prosodic features* (e.g., Was there a pitch fall/rise in last word?)
- Decision trees are trained to detect desired events from features
- Separate test set used to evaluate classifier performance

Method: Language Models

- Words can also predict events of interest, using N-gram language models.
- Endpointing -- predict endpoint probability from last two words: P(endpoint | word₋₁, word₋₂)
- Emotion detection -- predict from all words in sentence: P(word₁, word₂, ..., word_n| emotion)
- $\square P > \text{threshold} \Rightarrow \text{system detects event}$
- Prosodic classifier and LM predictions can be combined for better results (multiply predictions)

Task 1: Endpointing in ATIS

- Air Travel Information System = Dialog task defined by DARPA to drive research in spoken dialog systems
- Users talk to a (simulated) air travel system
- Simulated endpointing "after the fact"
- About 18,000 utterances, 10 words/utterance
- Test set of 1974 unseen utterances
- 5.9% word error rate on test set

Endpointing Algorithms

- **Baseline algorithm:**
 - Pick pause threshold for decision
 - Detect endpoint when pause duration > threshold
- **•** Endpointing with prosody and/or LM:
 - Pick probability threshold for decision
 - Train separate classifiers for pause values > .03, .06, .09, .12, .25, .50, .80 seconds
 - For each pause threshold:
 - Dectect endpoint if classifiers predicts probability > threshold
 - Otherwise wait until next higher pause threshold is reached
 - Detect endpoint when pause > 1s

Endpointing Metrics

- Performance metrics:
 - False alarms: system detects false endpoint
 - Misses: system fails to detect true endpoint
 - Recall = % of true endpoints detected = 1 - Miss rate
- Error trade-off
 - System can be set more or less "trigger-happy"
 - Fewer false negatives ⇔ More false positives
 - Equal error rate (EER): error rate at which false alarms = misses
- ROC curve: graphs recall vs. false alarms

ATIS Endpointing Results

- Endpointer used automatic recognition output (5.9% WER. Note: LM degrades with WER).
- Equal Error Rates
 - Baseline: pause threshold 8.9 %
 - Prosodic decision tree only 6.7 %
 - Language model only 6.0 %
 - Prosody + LM combined 5.3 %
- Prosody alone beats baseline
- Combined classifier better than LM alone

ROC for Endpointing in ATIS

ATIS Examples

□ Do you have ↑ a flight ↑ between ↑ Philadelphia ↑ and San Francisco? ↑

- Baseline makes false endpoints at the
 Iocations
 (so would cut speaker off prematurely)
- Prosody model waits, despite the pause, because pitch doesn't move much, stays high (hesitation)
- □ I would like to find the cheapest ↑ one-way fare from Philadelphia to Denver. ↑
 - Prosody mistakenly predicts endpoint ("?" rise)
 - Combined prosody and LM endpointer avoids false endpoint (rare to end on "cheapest").

Prosodic Cues for Endpointing

Pitch range

- speaker close to his/her estimated F0 "baseline" or "topline" (logratio of fitted F0 in previous word to that measure)
- baseline/topline estimated by LTM model of pitch
- Phone and syllable durations
 - last vowel or syllable rhyme is extended
 - normalized for both the segmental content (intrinsic duration) and the speaker

Endpointing Speed-Up

- User Waiting Time = average pause delay needed for system to detect true endpoints
- In addition to preventing false alarms, prosody reduces UWT for any given false alarm rate:

False Alarms	<u>2%</u>	4%	<u>6%</u>	<u>8%</u>	<u> 10%</u>
Baseline	.87	.54	.38	.26	.15
Tree only	.82	.32	.18	.10	.09
Tree + LM	.69	.23	.10	.06	.05

Result: zippier interaction with system

Endpointing in a NASA Domain

- Personal <u>Satellite Assistant</u>: Dialog system controlling a (simulated) on-board robot
- Developed at NASA Ames/RIACS
- Data courtesy of Beth Ann Hockey
- Endpointer trained on ATIS, tested on 3200 utterances recorded at RIACS
- Used transcribed words
- "Blind test": no training on PSA data!

Endpointing in PSA Data

- ATIS language model not applicable, not used for endpointing
- PSA data had no utterance-internal pauses ⇒ baseline and prosodic model had same EER = 3.1% (no opportunity for false alarms)
- □ However: prosody still **saves time**:

UWT (in seconds) at 2% false positive rate

- Baseline 0.170
- Prosodic tree 0.135

Prosodic model is portable to new domains!

PSA Example

■ Move to commander's seat and measure radiation ↑

- Baseline and prosody system both configured (via decision thresh.) for 2% false alarm rate
- As noted earlier, no error diffs for this corpus
- But baseline system takes 0.17s to endpoint after last word.
- Prosody system takes only 0.04s to endpoint!

Task 2: Emotion Detection

- Issue of data: used corpus of HC telephone dialogs labeled for emotion for DARPA project
- □ Would like more realistic data, with fear, etc.
- DARPA data: main emotion = frustration
- Each dialog labeled by 2+ people independently
- Ind "Consensus" pass for all disagreements, by two of the same labelers.

Labeled Classes

- Emotion: neutral, annoyed, frustrated, tired/disappointed, amused/surprised,
- Speaking style: hyperarticulation, perceived pausing between words or syllables, raised voice
- Repeats and corrections: repeat/rephrase, repeat/rephrase with correction, correction only
- Miscellaneous useful events: self-talk, noise, non-native speaker, speaker switches, etc.

Emotion Samples

Neutral

- **1** • July 30
- **2** • Yes

Disappointed/tired

- *No*
- Amused/surprised **4** 7
 - *No*

6

Frustrated

Annoyed

• Yes

4 Yes

• Late morning (HYP)

3

68

- **E**5 No
- **9** • No, I am ... (HYP)
- **(**10 There is no Manila... •

Results: Annoy/Frust vs All Others

	Accuracy (%) (chance = 50%)	Kappa (Acc-C)/(1-C)
Each Human with Other Human, overall	71.7	.38
Human with Human "Consensus" (biased)	84.2	.68
Prosodic Decision Tree with Consensus	75.6	.51
Tree with Consensus, no repeat/correction	72.9	.46
Tree with Consensus, repeat/correction only	68.7	.37
Language Model features only	63.8	.28

Results (cont.)

□ H-H labels agree 72%, complex decision task

- inherent continuum
- speaker differences
- relative vs. absolute judgements
- □ H labels agree 84% with "consensus" (biased)
- Tree model agrees 76% with consensus-- better than original labelers with each other
- Prosodic model makes use of a dialog state feature, but without it it's still better than H-H
- Language model features alone are not good predictors (dialog feature alone is better)

Baseline Prosodic Tree

duration feature pitch feature other feature

```
REPCO in ec2,rr1,rr2,rex2,inc,ec1,rex1 : 0.7699 0.2301 AF
   MAXFO IN MAXV N < 126.93: 0.4735 0.5265 N
   MAXFO IN MAXV N >= 126.93: 0.8296 0.1704 AF
       MAXPHDUR N < 1.6935: 0.6466 0.3534 AF
           UTTPOS < 5.5: 0.1724 0.8276 N
           UTTPOS >= 5.5: 0.7008 0.2992 AF
       MAXPHDUR N >= 1.6935: 0.8852 0.1148 AF
REPCO in 0 : 0.3966 0.6034 N
   UTTPOS < 7.5: 0.1704 0.8296 N
   UTTPOS >= 7.5: 0.4658 0.5342 N
       VOWELDUR_DNORM_E_5 < 1.2396: 0.3771 0.6229 N
           MINFOTIME < 0.875: 0.2372 0.7628 N
           MINFOTIME >= 0.875: 0.5 0.5 AF
               SYLRATE < 4.7215: 0.562 0.438 AF
                   MAXF0_TOPLN < -0.2177: 0.3942 0.6058 N
                   MAXFO TOPLN >= -0.2177: 0.6637 0.3363 AF
               SYLRATE >= 4.7215: 0.2816 0.7184 N
       VOWELDUR DNORM E 5 >= 1.2396: 0.5983 0.4017 AF
           MAXPHDUR N < 1.5395: 0.3841 0.6159 N
               MINFOTIME < 0.435: 0.1 0.9 N
               MINFOTIME >= 0.435: 0.4545 0.5455 N
                   RISERATIO DNORM E 5 < 0.69872: 0.3284 0.6716 N
                  RISERATIO_DNORM_E_5 >= 0.69872: 0.6111 0.3889 AF
           MAXPHDUR N >= 1.5395: 0.6728 0.3272 AF
```

Predictors of Annoyed/Frustrated

- Prosodic: Pitch features:
 - high maximum fitted F0 in longest normalized vowel
 - high speaker-norm. (1st 5 utts) ratio of F0 rises/falls
 - maximum F0 close to speaker's estimated F0 "topline"
 - minimum fitted F0 late in utterance (no "?" intonation)

Prosodic: Duration and speaking rate features

- long maximum phone-normalized phone duration
- long max phone- & speaker- norm.(1st 5 utts) vowel
- low syllable-rate (slower speech)
- **Other:**
 - utterance is repeat, rephrase, explicit correction
 - utterance is after 5-7th in dialog

Effect of Class Definition

	Accuracy (%) $(chance = 50\%)$	Entropy Reduction
Baseline prosody model Consensus labels A,F vs. N,else	75.6	21.6
Tokens on which labelers originally agreed A,F vs. N,else	78.3	26.4
All tokens Consensus labels F vs. A,N,else	82.7	37.0

For less ambiguous or more extreme tokens, performance is significantly better than our baseline

Error trade-offs (ROC)

Results Summary

- Prosody allows significantly more accurate (fewer false cut-offs) and faster endpointing in spoken input to dialog systems.
- Prosodic endpointer is portable to new applications. (Note: language model is not!)
- Prosody significantly improves detection of frustration over (cheating) language model.
- Prosody is of further value when combined with lexical information, regardless of which model is better on its own.

Impact and Future Work

- Prosody enables more accurate spoken language processing by capturing information "beyond the words".
- Prosody creates new capabilities for systems (e.g., emotion detection)
- □ Prosody can speed up HCI (e.g., endpointing).
- Prosody presents potential for fusion with other communication modalities, such as vision.

Thank You