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Abstract
Approaches from standard automatic speaker recognition,
which rely on cepstral features, suffer the problem of lack of
interpretability for forensic applications. But the growing prac-
tice of using “higher-level” features in automatic systemsoffers
promise in this regard. We provide an overview of automatic
higher-level systems and discuss potential advantages, aswell
as issues, for their use in the forensic context.
Index Terms: speaker recognition, higher-level features, foren-
sics

1. Introduction
Recent overview papers [1, 2] compare and contrast traditional
forensic speaker recognition with automatic speaker verifica-
tion systems. In doing so, the automatic systems are exempli-
fied by approaches that are based on cepstral modeling, i.e.,on
low-level, short-term acoustic features of the speaker’s speech.
While such approaches are certainly still the standard, they
alone by no means represent the state of the art in automatic
speaker recognition. Work by several teams [3, 4] has shown
that higher-level features based on long-term, often linguisti-
cally motivated units can significantly improve speaker recog-
nition performance. Examples of higher-level features include
phonetic, prosodic, and lexical observations, as distilled from
automatic recognition output and other measurements (suchas
pitch tracks). Improved accuracy alone should motivate their
consideration for forensic speaker recognition.

Furthermore, we would argue that higher-level features
have properties that make them especially attractive in foren-
sic applications. Higher-level features are often easier to inter-
pret than low-level ones, and are in some cases directly related
to features used by traditional forensic analysis. Higher-level
features can also benefit from intrinsic robustness to acoustic
mismatch between speech samples, a major problem for accu-
rately estimating the likelihood ratios required for forensic use
[2], and have other desirable properties.

To provide an idea of the range of available techniques, we
start with an overview and categorization of higher-level mod-
eling techniques for speaker recognition, based on [5]. We then
make the case for developing these or similar techniques forthe
forensic setting, by discussing specific advantages they afford
over standard, low-level speaker modeling methods.

2. Higher-Level Features in
Automatic Systems

A recent survey of research on higher-level features used inau-
tomatic text-independent speaker recognition [5] considered as

“higher level” any feature that involves eitherlinguistic infor-
mation (defined as requiring phone- or word-level automatic
speech recognition [ASR],) or longer-range information (longer
than the frame-level information used in cepstral-based sys-
tems). To clarify how the different approaches use higher-level
information, [5] specified not only the type of feature used,but
also three other factors:

1. Temporal span of the feature

2. Level of ASR used forfeature extraction

3. Level of ASR used forregion conditioning

as indicated in Table 1. A longer time span can be the result
either of using a longer feature extraction region (e.g., a re-
gion based on lexical information) or of modeling sequential
information based on frame-level features (e.g., pitch or energy
dynamics over a sequence of many frames).ASR used for fea-
ture extractionrefers to the highest level of ASR information
needed to define and extract the feature. Features that require
the output of an automatic speech recognition system neces-
sarily involve some amount of linguistic information, but ASR
systems can utilize varying degrees of linguistic constraints. At
one end of the continuum are “open loop” phone recognizers,
which decode using acoustic phone models but no phonotac-
tic, lexical, or syntactic constraints. These systems essentially
provide a means of tokenizing the acoustic space according to
recognizer phone models. A step further in the direction of
linguistic constraints involves imposing phonotactic constraints
obtained from a phone N-gram language model. This approach
favors phone sequences that are observed in the language. At
the extreme, the recognizer uses pronunciation dictionaries and
word-level N-gram language models to hypothesize phones and
words that make sense as part of complete sentence hypothe-
ses. Higher-level features based on such output aim to capture
information associated with specific words or word sequences,
including not only their frequency of occurrence but also their
acoustic realization, pronunciation, and prosodic rendering.

Finally,ASR used for region conditioningrefers to the high-
est level of ASR required for filtering the output stream of
features. If chosen appropriately, conditioning can improve
speaker recognition in two ways: by reducing variability orby
shifting means. Conditioning can reduce the variance of fea-
ture distributions by collecting data over more constrained (and
thus more homogeneous) regions. And it can focus on regions
that exhibit greater inherent between-speaker variation,i.e., that
move the means of one speaker’s feature distribution farther
away from those of other speakers. Both effects result in im-
proved speaker discrimination.



Table 1: Multidimensional classification of higher-level features in automatic speaker recognition, adapted from [5]. DTW= dynamic
time warping,unc.= unconstrained,rec. = recognition,artic. = articulatory,freq. = frequencies,POS= part of speech.
Feature Feature Time ASR Used for Selected
Type Description Span Feature Extraction Region Conditioning References

Cepstral

phone-conditioned cepstral models frame none phones, classes [6]
text-conditioned GMMs frame none words, syllables [7, 8]
phone HMMs frame phone, word phone [9, 10]
whole-word models longer none frequent word N-grams [11]
DTW word models longer none frequent word N-grams [12, 13]

Cepstral-
derived

MLLR transforms frame word, unc. phone phone [14]

Acoustic
tokenization
(“phonetic”)

phone N-gram freq. longer unc. phone none [15, 16]
word-conditioned phone N-gram freq. longer unc. phone frequent word N-grams [17]
conditioned pronunciation model longer unc. phone + word phones from word rec. [18]
conditioned pronunciation model longer unc. phone + artic. phones from unc. phone rec.[19]

Prosodic

prosody dynamics longer none none / phone [20, 21] / [22]
DTW word-pitch models longer none word [22]
interpause / conversation-level statisticslonger word none [23] / [24]
word-constrained phone duration longer word word [25]
phone-constrained state duration longer word phone [25]
syllable-based prosody sequence longer word none / words, POS [26] / [27]

Lexical word N-grams longer word none [28, 29]
Lexico-prosodic duration-conditioned word N-grams longer word none [30]

2.1. Cepstral and cepstral-derived features

Approaches based on cepstral features use the output of a word
or phone recognizer to condition the extraction of cepstralfea-
tures, thereby reducing variability associated with phonetic con-
tent. A review of some of these approaches is provided in [6].
Note that constraining the features to specific words essentially
confers on text-independent speaker models some of the advan-
tages of text-dependent speaker verification. The approachin
[7] conditions a cepstral Gaussian mixture model (GMM) on the
identities of frequent words, based on recognizer word align-
ments. A variant conditions on syllables rather than words [8].
A more recent variant [11] uses whole-word HMMs, thereby
enabling even more detailed modeling; the HMMs represent not
only words but frequent bigrams and trigrams as well. Whole
words and phrases are also modeled by [12], but in a nonpara-
metric fashion.

The maximum likelihood linear regression (MLLR) ap-
proach [14] uses speaker-specific model adaptation transforms
from a speech recognizer (either phone or word level) as fea-
tures, modeled by a support vector machine (SVM). Instead of
cepstral features, it uses thedifferencebetween speaker-adapted
Gaussian means and corresponding speaker-independent means
as features. The Gaussian models used in this approach are not
unstructured GMMs but the detailed context-dependent phone
models used in a speech recognizer, making the resulting fea-
tures text independent.

2.2. Acoustic tokenization features

A large body of work, often referred to as “phonetic” recog-
nition or modeling, employs unconstrained phone recognition
essentially as a means by which to discretize the acoustic
space and enable acoustic sequence modeling. Unconstrained-
phone-based speaker models capture an assortment of speaker-
dependent factors—including spectral characteristics, pronun-
ciation idiosyncrasies, and lexical preferences—and can there-
fore be difficult to interpret. The basic approach obtains the
top phone decoding hypothesis and then evaluates likelihood
ratios of speaker-specific and generic (background) phone N-

gram models [15]. Results can be improved by running sev-
eral language-dependent or gender-dependent phone recogniz-
ers. Note that, due to lack of phonotactic constraints, these
recognizers produce phone sequences that will not match dic-
tionary pronunciations. But, it is precisely through thesemis-
matches that the system can learn that particular acoustic ten-
dencies are correlated with particular speakers.

An important advance was the use of SVMs instead of like-
lihood models to model phone N-gram frequencies [16]. In
[17], lattice-based phone N-gram frequency modeling is com-
bined with word conditioning. This approach is thus analogous
to that used for the word-conditioned cepstral models discussed
earlier. A unique combination of phone- and word-based mod-
eling is described in [18, 3]. The output of an unconstrained
phone recognizer is time-aligned with the phone sequence from
a word recognizer, and the conditional probabilities of thefor-
mer given the latter are modeled. Thus, this model captures
averaged phone-specific pronunciation realizations

2.3. Prosodic features
Prosodic features attempt to capture speaker-specific variation
in pitch, duration, and energy patterns. Early work on using
prosody for text-independent speaker recognition is described
in [20]. Pitch movements are modeled by fitting a piecewise
linear model to the pitch track to obtain a stylized pitch contour.
Parameters of the stylized model are then used as statistical fea-
tures for speaker verification. Variants are described in [22],
which looks at rises and falls of the fitted pitch and energy val-
ues as well. More recent work [21] employs polynomial fits and
factor analysis to characterize a speaker’s prosodic dynamics.

Several studies have looked at linguistically conditioned
duration, pitch, and energy statistics in longer spans of speech.
In [23], prosody statistics are computed for units between
pauses. The interpause unit is but one example of a larger world
of features that could be defined at different temporal spans; the
focus is on modeling approaches and modifying GMMs to cope
with missing features (such as pitch, which is missing during
unvoiced regions). In [24, 3], statistics are computed overan en-
tire conversation side, and distances of each conversation-level



feature vector from vectors for target versus impostor speakers
are compared using log likelihood ratios.

Two prosodic approaches that use ASR forconditioning(as
opposed to merely for extraction) are described in [25]. One
method, the phone-in-word-duration GMM, models the dura-
tions of phones within specific words. Unlike the previous
prosodic approaches, it employs ASR for conditioning because
it compares durations on a per-word basis. A second method,
the state-in-phone-duration GMM, uses the durations of the
three states in phone HMMs as features, and phones are used
for conditioning.

A recent method models syllable-based prosodic feature
sequences [26, 31]. In contrast to interpause-based and
conversation-level prosody statistics, this approach uses smaller
time units (resulting in more features) and models sequential in-
formation. Syllables are automatically inferred from ASR out-
put, and a variety of F0, duration, and energy values are ex-
tracted per syllable. In an unconstrained version, features are
extracted for all syllable N-grams in a conversation side. In
a word-constrained version [27], lexical, part-of-speech, and
pause information is used to condition feature extraction sto
specific locations believed to behave similarly prosodically.

2.4. Lexical and lexico-prosodic features

A speaker’s distribution of word sequences is historicallyone
of the earliest types of higher-level features explored forau-
tomatic speaker recognition. Such work uses lexical N-gram
statistics to discriminate speakers, modeled with likelihood ra-
tios or SVMs. More recently, the approach has been extended
to encode the duration (slow/fast) of frequent word types aspart
of the N-gram frequencies [30]. This technique represents a
truehybrid model of lexical and prosodic features, since it ex-
plicitly models both N-gram frequencies and word durations.
It thereby simultaneously captures lexical, pronunciation, and
prosodic characteristics of the speaker.

3. The Case for Automatic Higher-Level
Features in Forensics

Having provided an overview of higher-level features from
work in automatic speaker verification, we now discuss poten-
tial benefits and issues for forensic applications.

3.1. Discriminative power

One obvious reason to use more, and specifically higher-level,
features and models for forensic applications is that they im-
prove recognition accuracy. Several research teams have shown
in their NIST evaluation systems and elsewhere that combin-
ing multiple systems reduces detection costs. Our own anal-
ysis of the contributions of the various components of such a
complex system has shown that higher-level features, whilenot
giving the best recognition accuracies by themselves,add the
most information to a traditional low-level speaker recognition
system. For example, a syllable-based prosodic system was the
best choice for a two-way combined system in which the other
system was a high-performance acoustic model [4].

Therefore, given standard techniques for calibration and
mapping of system scores to likelihood ratios [32], combined
low- and high-level speaker models should reduce the expected
probabilities of error for a range of priors. This, in itself, should
constitute the strongest argument for higher-level techniques
among forensic practitioners.

3.2. Interpretability and acceptance

For use in court, it is desirable that measurements and models
used for technical speaker verification be interpretable toa non-
expert (e.g., so that it can be explained to a jury) [1]. Many of
the higher-level features described earlier are more interpretable
than cepstral features, either because they are inherentlymore
accessible to perception (lexical features, pitch, durational fea-
tures) or more easily visualized (cepstral features are hard to
visualize given their high dimensionality). High-level features
might also be more acceptable to legal and forensic practitioners
because of their overlap with traditional methods. For example,
formant measurements, pronunciation characterization, and du-
rational features used in traditional linguistic forensicanalysis
all have correlates in various methods described in Section2.

It is important to convey that (1) automatic recognition sys-
tems exhibit less-than-perfect feature extraction (e.g.,phone
and word recognition errors), but that (2) their performance
does not require perfect recognition of such features. In fact, (3)
the errorful behavior can be speaker-dependent and may then
be exploited for speaker discrimination. To illustrate thelast
point: phone-recognition-based speaker models are more pow-
erful when phonotactic constraints are excluded, even though
the exclusion of constraints leads to higher error rates in phone
recognition itself.

3.3. Data acquisition

Automatic methods enable the processing of larger amounts of
data than methods based on human annotation ever could. This
enables the construction of large speech databases that canyield
detailed population statistics that in turn are needed for the accu-
rate estimation of the typicality of a feature, as needed forlike-
lihood ration computation. We should note that combined hu-
man/automatic annotation methods [33] could also have a place
in forensics. For example, to enhance accuracy of automatic
feature extraction, one could produce human word transcripts
(which are relatively inexpensive) for the speech samples in
question, thereby enabling more accurate automatic alignments
than those obtained by purely automatic word recognition.

3.4. Robustness to acoustic variability

A major problem for accurate likelihood ratio estimation is
acoustic mismatch between background and test data, or be-
tween known and questioned recordings. Such mismatch could
be due to extrinsic factors (background noise, different record-
ing channels) or intrinsic factors (e.g., speaking context, emo-
tional state). Many higher-level features are inherently more
robust to extrinsic features (e.g., pronunciation and durational
properties), but could also be more variable than low-levelfea-
tures to intrinsic factors. Access to the full range of speaker fea-
tures gives the forensic speaker recognition expert the choice to
select the method most appropriate to a particular case.

3.5. Computational versus human effort

A counter-argument to higher-level modeling in speaker recog-
nition that is often cited is the added computational overhead.
For example, many high-level features require some form of
speech recognition. However, this argument is less valid in
forensics than in, say, commercial applications. The legalsys-
tem can afford techniques that require detailed processingof
speech data (possibly taking a few times real time), given that
the alternative is even slower and more expensive human label-
ing and expertise.
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