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Abstract

Approaches from standard automatic speaker recognition,
which rely on cepstral features, suffer the problem of latk o
interpretability for forensic applications. But the grogiprac-

tice of using “higher-level” features in automatic systesfiers
promise in this regard. We provide an overview of automatic
higher-level systems and discuss potential advantageselas

as issues, for their use in the forensic context.

Index Terms: speaker recognition, higher-level features, foren-
sics

1. Introduction

Recent overview papers [1, 2] compare and contrast traditio
forensic speaker recognition with automatic speaker weerifi
tion systems. In doing so, the automatic systems are exempli
fied by approaches that are based on cepstral modelingyn.e.,
low-level, short-term acoustic features of the speakqréesh.
While such approaches are certainly still the standardy the
alone by no means represent the state of the art in automatic
speaker recognition. Work by several teams [3, 4] has shown
that higher-level features based on long-term, often Istgu
cally motivated units can significantly improve speakemomec
nition performance. Examples of higher-level featuresuide
phonetic, prosodic, and lexical observations, as distiftem
automatic recognition output and other measurements @sich
pitch tracks). Improved accuracy alone should motivatér the
consideration for forensic speaker recognition.

Furthermore, we would argue that higher-level features
have properties that make them especially attractive ienfor
sic applications. Higher-level features are often easiénter-
pret than low-level ones, and are in some cases directltecela
to features used by traditional forensic analysis. Hidbeel
features can also benefit from intrinsic robustness to dicous
mismatch between speech samples, a major problem for accu-
rately estimating the likelihood ratios required for fosenuse
[2], and have other desirable properties.

To provide an idea of the range of available techniques, we
start with an overview and categorization of higher-leveldmn
eling techniques for speaker recognition, based on [5].AW¥a t
make the case for developing these or similar techniquetéor
forensic setting, by discussing specific advantages thfeydaf
over standard, low-level speaker modeling methods.

2. Higher-Level Featuresin
Automatic Systems

A recent survey of research on higher-level features usad-in
tomatic text-independent speaker recognition [5] considas

“higher level” any feature that involves eithinguistic infor-
mation (defined as requiring phone- or word-level automatic
speech recognition [ASR],) or longer-range informatiam{jer
than the frame-level information used in cepstral-basesd sy
tems). To clarify how the different approaches use higbeell
information, [5] specified not only the type of feature usiat,
also three other factors:

1. Temporal span of the feature
2. Level of ASR used fofeature extraction

3. Level of ASR used foregion conditioning

as indicated in Table 1. A longer time span can be the result
either of using a longer feature extraction region (e.g.ea r
gion based on lexical information) or of modeling sequéntia
information based on frame-level features (e.g., pitchnergy
dynamics over a sequence of many framésJR used for fea-
ture extractionrefers to the highest level of ASR information
needed to define and extract the feature. Features thateequi
the output of an automatic speech recognition system neces-
sarily involve some amount of linguistic information, buBR
systems can utilize varying degrees of linguistic constsaiAt
one end of the continuum are “open loop” phone recognizers,
which decode using acoustic phone models but no phonotac-
tic, lexical, or syntactic constraints. These systemsressky
provide a means of tokenizing the acoustic space according t
recognizer phone models. A step further in the direction of
linguistic constraints involves imposing phonotactic staints
obtained from a phone N-gram language model. This approach
favors phone sequences that are observed in the language. At
the extreme, the recognizer uses pronunciation dictieaamd
word-level N-gram language models to hypothesize phongs an
words that make sense as part of complete sentence hypothe-
ses. Higher-level features based on such output aim to reaptu
information associated with specific words or word sequence
including not only their frequency of occurrence but alseirth
acoustic realization, pronunciation, and prosodic reinder

Finally, ASR used for region conditionimgfers to the high-
est level of ASR required for filtering the output stream of
features. If chosen appropriately, conditioning can impro
speaker recognition in two ways: by reducing variabilityogr
shifting means. Conditioning can reduce the variance of fea
ture distributions by collecting data over more constraitend
thus more homogeneous) regions. And it can focus on regions
that exhibit greater inherent between-speaker variatien that
move the means of one speaker’s feature distribution farthe
away from those of other speakers. Both effects result in im-
proved speaker discrimination.



Table 1: Multidimensional classification of higher-levebfures in automatic speaker recognition, adapted fronDfb}V = dynamic
time warping,unc. = unconstrainedec. = recognition,artic. = articulatory,freq. = frequenciesPOS= part of speech.

Feature Feature Time ASR Used for Selected
Type Description Span | Feature Extractior) Region Conditioning References
phone-conditioned cepstral models | frame | none phones, classes [6]
Cepstral text-conditioned GMMs frame | none words, syllables [7, 8]
phone HMMs frame | phone, word phone [9, 10]
whole-word models longer| none frequent word N-grams [11]
DTW word models longer| none frequent word N-grams [12, 13]
g:rri)vsé:jal' MLLR transforms frame | word, unc. phone | phone [14]
Acoustic phone N-gram freq. longer| unc. phone none [15, 16]
tokenization word-conditioned phone N-gram freq| longer| unc. phone frequent word N-grams [17]
(“phonetic”) conditioned pronunciation model longer| unc. phone + word phones from word rec. [18]
conditioned pronunciation model longer| unc. phone + artic,. phones from unc. phone rec[19]
prosody dynamics longer| none none / phone [20, 21]/[22]
DTW word-pitch models longer| none word [22]
Prosodic interpause / conversation-level statistidenger| word none [23] / [24]
word-constrained phone duration longer| word word [25]
phone-constrained state duration longer| word phone [25]
syllable-based prosody sequence longer| word none / words, POS [26] / [27]
Lexical word N-grams longer| word none [28, 29]
Lexico-prosodic duration-conditioned word N-grams | longer| word none [30]

2.1. Cepstral and cepstral-derived features

Approaches based on cepstral features use the output ofda wor
or phone recognizer to condition the extraction of cepsea
tures, thereby reducing variability associated with phigreon-

tent. A review of some of these approaches is provided in [6].
Note that constraining the features to specific words efsdignt
confers on text-independent speaker models some of th@eadva
tages of text-dependent speaker verification. The apprivach
[7] conditions a cepstral Gaussian mixture model (GMM) an th
identities of frequent words, based on recognizer wordnalig
ments. A variant conditions on syllables rather than wo8js [

A more recent variant [11] uses whole-word HMMs, thereby
enabling even more detailed modeling; the HMMs represent no
only words but frequent bigrams and trigrams as well. Whole
words and phrases are also modeled by [12], but in a nonpara-
metric fashion.

The maximum likelihood linear regression (MLLR) ap-
proach [14] uses speaker-specific model adaptation transfo
from a speech recognizer (either phone or word level) as fea-
tures, modeled by a support vector machine (SVM). Instead of
cepstral features, it uses ttiferencebetween speaker-adapted
Gaussian means and corresponding speaker-independemg mea
as features. The Gaussian models used in this approachtare no
unstructured GMMs but the detailed context-dependent ghon
models used in a speech recognizer, making the resulting fea
tures text independent.

2.2. Acoustic tokenization features

A large body of work, often referred to as “phonetic” recog-
nition or modeling, employs unconstrained phone recogmiti
essentially as a means by which to discretize the acoustic
space and enable acoustic sequence modeling. Uncondtraine
phone-based speaker models capture an assortment of speake
dependent factors—including spectral characteristiosnyor-
ciation idiosyncrasies, and lexical preferences—and careth
fore be difficult to interpret. The basic approach obtaires th
top phone decoding hypothesis and then evaluates likalihoo
ratios of speaker-specific and generic (background) phone N

gram models [15]. Results can be improved by running sev-
eral language-dependent or gender-dependent phone izcogn
ers. Note that, due to lack of phonotactic constraints,ethes
recognizers produce phone sequences that will not mateh dic
tionary pronunciations. But, it is precisely through thesis-
matches that the system can learn that particular acoastic t
dencies are correlated with particular speakers.

An important advance was the use of SVMs instead of like-
lihood models to model phone N-gram frequencies [16]. In
[17], lattice-based phone N-gram frequency modeling is-com
bined with word conditioning. This approach is thus analeggo
to that used for the word-conditioned cepstral models dised
earlier. A unique combination of phone- and word-based mod-
eling is described in [18, 3]. The output of an unconstrained
phone recognizer is time-aligned with the phone sequeince fr
a word recognizer, and the conditional probabilities offitre
mer given the latter are modeled. Thus, this model captures
averaged phone-specific pronunciation realizations

2.3. Prosodic features

Prosodic features attempt to capture speaker-specifiaticari
in pitch, duration, and energy patterns. Early work on using
prosody for text-independent speaker recognition is desdr
in [20]. Pitch movements are modeled by fitting a piecewise
linear model to the pitch track to obtain a stylized pitchtoom.
Parameters of the stylized model are then used as stdtfstea
tures for speaker verification. Variants are described #,[2
which looks at rises and falls of the fitted pitch and enerdy va
ues as well. More recent work [21] employs polynomial fits and
factor analysis to characterize a speaker’s prosodic digsam
Several studies have looked at linguistically conditioned
duration, pitch, and energy statistics in longer spans eésh.
In [23], prosody statistics are computed for units between
pauses. The interpause unit is but one example of a largéa wor
of features that could be defined at different temporal spghes
focus is on modeling approaches and modifying GMMs to cope
with missing features (such as pitch, which is missing dyrin
unvoiced regions). In [24, 3], statistics are computed avezn-
tire conversation side, and distances of each converskiah



feature vector from vectors for target versus impostor lepesa
are compared using log likelihood ratios.

Two prosodic approaches that use ASRdonditioning(as
opposed to merely for extraction) are described in [25]. One
method, the phone-in-word-duration GMM, models the dura-
tions of phones within specific words. Unlike the previous
prosodic approaches, it employs ASR for conditioning beeau

3.2. Interpretability and acceptance

For use in court, it is desirable that measurements and model
used for technical speaker verification be interpretabéerton-
expert (e.g., so that it can be explained to a jury) [1]. Mahy o
the higher-level features described earlier are morepratable
than cepstral features, either because they are inhenaiotly
accessible to perception (lexical features, pitch, donati fea-

it compares durations on a per-word basis. A second method, tyres) or more easily visualized (cepstral features are tmr

the state-in-phone-duration GMM, uses the durations of the

visualize given their high dimensionality). High-levekteres

three states in phone HMMs as features, and phones are used might also be more acceptable to legal and forensic prawtits

for conditioning.

A recent method models syllable-based prosodic feature
sequences [26, 31].
conversation-level prosody statistics, this approack ss®ller
time units (resulting in more features) and models seqalnti
formation. Syllables are automatically inferred from ASIR-0
put, and a variety of FO, duration, and energy values are ex-
tracted per syllable. In an unconstrained version, featare
extracted for all syllable N-grams in a conversation sida. |
a word-constrained version [27], lexical, part-of-speeahd
pause information is used to condition feature extractida s
specific locations believed to behave similarly prosodijcal

2.4. Lexical and lexico-prosodic features

A speaker’s distribution of word sequences is historicalfe
of the earliest types of higher-level features exploreddor
tomatic speaker recognition. Such work uses lexical N-gram
statistics to discriminate speakers, modeled with lilasih ra-

because of their overlap with traditional methods. For gdam
formant measurements, pronunciation characterizatimhda-

In contrast to interpause-based and rational features used in traditional linguistic forenaialysis

all have correlates in various methods described in Se2tion

Itis important to convey that (1) automatic recognition-sys
tems exhibit less-than-perfect feature extraction (gxgone
and word recognition errors), but that (2) their performeanc
does not require perfect recognition of such features.dt €8)
the errorful behavior can be speaker-dependent and may then
be exploited for speaker discrimination. To illustrate tast
point: phone-recognition-based speaker models are mave po
erful when phonotactic constraints are excluded, evengou
the exclusion of constraints leads to higher error ratehonp
recognition itself.

3.3. Dataacquisition

Automatic methods enable the processing of larger amodnts o
data than methods based on human annotation ever could. This

tios or SVMs. More recently, the approach has been extended enables the construction of large speech databases thgetdn

to encode the duration (slow/fast) of frequent word typgseat

of the N-gram frequencies [30]. This technique represents a
true hybrid model of lexical and prosodic features, since it ex-
plicitly models both N-gram frequencies and word durations
It thereby simultaneously captures lexical, pronuncigtiand
prosodic characteristics of the speaker.

3. The Casefor Automatic Higher-Level
Featuresin Forensics

Having provided an overview of higher-level features from
work in automatic speaker verification, we now discuss poten
tial benefits and issues for forensic applications.

3.1. Discriminative power

One obvious reason to use more, and specifically highet:leve
features and models for forensic applications is that tihey i
prove recognition accuracy. Several research teams hawash

in their NIST evaluation systems and elsewhere that combin-
ing multiple systems reduces detection costs. Our own anal-
ysis of the contributions of the various components of such a
complex system has shown that higher-level features, wbile
giving the best recognition accuracies by themselagsl the
most information to a traditional low-level speaker redtign
system. For example, a syllable-based prosodic systemhsas t
best choice for a two-way combined system in which the other
system was a high-performance acoustic model [4].

Therefore, given standard techniques for calibration and
mapping of system scores to likelihood ratios [32], combine
low- and high-level speaker models should reduce the eggect
probabilities of error for a range of priors. This, in itselfiould
constitute the strongest argument for higher-level tespines
among forensic practitioners.

detailed population statistics that in turn are neededi®atcu-

rate estimation of the typicality of a feature, as needediker
lihood ration computation. We should note that combined hu-
man/automatic annotation methods [33] could also haveaepla
in forensics. For example, to enhance accuracy of automatic
feature extraction, one could produce human word transcrip
(which are relatively inexpensive) for the speech samptes i
question, thereby enabling more accurate automatic akgiten
than those obtained by purely automatic word recognition.

3.4. Robustnessto acoustic variability

A major problem for accurate likelihood ratio estimation is
acoustic mismatch between background and test data, or be-
tween known and questioned recordings. Such mismatch could
be due to extrinsic factors (background noise, differecbre-

ing channels) or intrinsic factors (e.g., speaking contexto-
tional state). Many higher-level features are inherenttyren
robust to extrinsic features (e.g., pronunciation and tiemal
properties), but could also be more variable than low-léval
tures to intrinsic factors. Access to the full range of sped#a-
tures gives the forensic speaker recognition expert theeelo
select the method most appropriate to a particular case.

3.5. Computational versus human effort

A counter-argument to higher-level modeling in speakeogec
nition that is often cited is the added computational ovadhe
For example, many high-level features require some form of
speech recognition. However, this argument is less valid in
forensics than in, say, commercial applications. The legsd
tem can afford techniques that require detailed processing
speech data (possibly taking a few times real time), givan th
the alternative is even slower and more expensive humaift labe
ing and expertise.
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